login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328905
Decimal expansion of the solution x = 0.56389552425993647949... to 1 + 2^x = 5^x.
6
5, 6, 3, 8, 9, 5, 5, 2, 4, 2, 5, 9, 9, 3, 6, 4, 7, 9, 4, 9, 0, 3, 9, 2, 9, 4, 5, 9, 3, 7, 9, 5, 6, 5, 6, 5, 5, 1, 5, 2, 1, 1, 7, 3, 0, 5, 0, 9, 9, 5, 5, 2, 9, 8, 5, 9, 2, 8, 0, 8, 3, 8, 0, 1, 2, 0, 4, 6, 6, 2, 0, 0, 5, 2, 2, 8, 1, 9, 7, 3, 5, 5, 0, 4, 2
OFFSET
0,1
EXAMPLE
0.5638955242599364794903929459379565655152117305099552985928083801204662005228...
MATHEMATICA
RealDigits[x /. FindRoot[1 + 2^x == 5^x, {x, 1}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Jun 28 2023 *)
PROG
(PARI) print(c=solve(x=0, 1, 1+2^x-5^x)); digits(c\.1^default(realprecision))[^-1] \\ [^-1] to discard possibly incorrect last digit. Use e.g. \p999 to get more digits. - M. F. Hasler, Oct 31 2019
CROSSREFS
Cf. A329334 (continued fraction).
Cf. A242208 (1 + 2^x = 4^x), A328900 (2^x + 3^x = 4^x), A328904 (1 + 3^x = 5^x).
Sequence in context: A123852 A329197 A153614 * A195709 A257837 A099038
KEYWORD
nonn,cons
AUTHOR
M. F. Hasler, Oct 31 2019
STATUS
approved