

A123852


Decimal expansion of (1*(2*(3*...)^(1/3))^(1/3))^(1/3).


7



1, 1, 5, 6, 3, 6, 2, 6, 8, 4, 3, 3, 2, 2, 6, 9, 7, 1, 6, 8, 5, 3, 3, 7, 0, 3, 2, 2, 8, 8, 7, 3, 6, 9, 3, 5, 6, 5, 1, 3, 0, 1, 4, 5, 4, 3, 8, 9, 1, 8, 8, 8, 6, 3, 7, 9, 9, 9, 2, 5, 9, 5, 9, 8, 9, 8, 3, 1, 7, 7, 8, 1, 6, 0, 7, 2, 8, 2, 6, 1, 9, 4, 6, 0, 7, 9, 0, 8, 1, 3, 3, 8, 2, 0, 3, 7, 8, 3, 1, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Cubic recurrence constant (see A123851): a cubic analog of Somos's quadratic recurrence constant A112302.


REFERENCES

S. R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.


LINKS

Table of n, a(n) for n=1..100.
Kh. Hessami Pilehrood and T. Hessami Pilehrood, Vaccatype series for values of the generalizedEulerconstant function and its derivative, arXiv:0808.0410 [math.NT], 2008.
Kh. Hessami Pilehrood and T. Hessami Pilehrood, Vaccatype series for values of the generalizedEulerconstant function and its derivative, Journal of Integer Sequences 13 (2010), Article 10.7.3.
Jonathan Sondow and Petros Hadjicostas, The generalizedEulerconstant function gamma(z) and a generalization of Somos's quadratic recurrence constant, arXiv:math/0610499 [math.CA], 2006.
Jonathan Sondow and Petros Hadjicostas, The generalizedEulerconstant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl. 332(1) (2007), 292314.
Eric Weisstein's World of Mathematics, Somos's Quadratic Recurrence Constant.


FORMULA

Product_{n>=1} n^(1/3^n).


EXAMPLE

1.156362684332269716853370322887369356513014543891888637999259598983177816...


MATHEMATICA

Take[RealDigits[Product[N[n^3^n, 200], {n, 400}]][[1]], 100].
RealDigits[Exp[D[PolyLog[n, 1/3], n]/.n>0], 10, 100][[1]] (* JeanFrançois Alcover, Jan 28 2014 *)


PROG

(PARI) prodinf(n=1, n^(1/3^n)) \\ Michel Marcus, Aug 03 2019


CROSSREFS

Cf. A052129, A112302, A116603, A123851, A123853, A123854.
Sequence in context: A274082 A199666 A307619 * A329197 A153614 A328905
Adjacent sequences: A123849 A123850 A123851 * A123853 A123854 A123855


KEYWORD

cons,easy,nonn


AUTHOR

Petros Hadjicostas and Jonathan Sondow, Oct 15 2006


EXTENSIONS

References updated by R. J. Mathar, Aug 12 2010


STATUS

approved



