login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of (1*(2*(3*...)^(1/3))^(1/3))^(1/3).
7

%I #31 Dec 19 2024 05:07:07

%S 1,1,5,6,3,6,2,6,8,4,3,3,2,2,6,9,7,1,6,8,5,3,3,7,0,3,2,2,8,8,7,3,6,9,

%T 3,5,6,5,1,3,0,1,4,5,4,3,8,9,1,8,8,8,6,3,7,9,9,9,2,5,9,5,9,8,9,8,3,1,

%U 7,7,8,1,6,0,7,2,8,2,6,1,9,4,6,0,7,9,0,8,1,3,3,8,2,0,3,7,8,3,1,7

%N Decimal expansion of (1*(2*(3*...)^(1/3))^(1/3))^(1/3).

%C Cubic recurrence constant (see A123851): a cubic analog of Somos's quadratic recurrence constant A112302.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.

%H Kh. Hessami Pilehrood and T. Hessami Pilehrood, <a href="https://arxiv.org/abs/0808.0410">Vacca-type series for values of the generalized-Euler-constant function and its derivative</a>, arXiv:0808.0410 [math.NT], 2008.

%H Kh. Hessami Pilehrood and T. Hessami Pilehrood, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Pilehrood/pilehrood2.html">Vacca-type series for values of the generalized-Euler-constant function and its derivative</a>, Journal of Integer Sequences 13 (2010), Article 10.7.3.

%H Jonathan Sondow and Petros Hadjicostas, <a href="https://arxiv.org/abs/math/0610499">The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant</a>, arXiv:math/0610499 [math.CA], 2006.

%H Jonathan Sondow and Petros Hadjicostas, <a href="http://dx.doi.org/10.1016/j.jmaa.2006.09.081">The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant</a>, J. Math. Anal. Appl. 332(1) (2007), 292-314.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SomossQuadraticRecurrenceConstant.html">Somos's Quadratic Recurrence Constant</a>.

%F Product_{n>=1} n^(1/3^n).

%e 1.156362684332269716853370322887369356513014543891888637999259598983177816...

%t Take[RealDigits[Product[N[n^3^-n,200], {n,400}]][[1]], 100].

%t RealDigits[Exp[-D[PolyLog[n, 1/3], n]/.n->0], 10, 100][[1]] (* _Jean-François Alcover_, Jan 28 2014 *)

%o (PARI) prodinf(n=1, n^(1/3^n)) \\ _Michel Marcus_, Aug 03 2019

%Y Cf. A052129, A112302, A116603, A123851, A123853, A123854.

%K cons,easy,nonn

%O 1,3

%A _Petros Hadjicostas_ and _Jonathan Sondow_, Oct 15 2006

%E References updated by _R. J. Mathar_, Aug 12 2010