login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328907
Decimal expansion of the solution x = 0.6009668516... to 1 + 3^x = 6^x.
5
6, 0, 0, 9, 6, 6, 8, 5, 1, 6, 1, 3, 6, 7, 5, 4, 8, 5, 7, 1, 5, 7, 0, 5, 2, 6, 4, 6, 3, 1, 8, 3, 8, 1, 2, 0, 6, 7, 7, 2, 2, 7, 9, 9, 2, 1, 3, 3, 0, 5, 1, 3, 5, 8, 8, 5, 0, 2, 6, 3, 9, 4, 0, 1, 9, 1, 6, 9, 2, 1, 2, 0, 4, 0, 9, 8, 0, 5, 1, 3, 9, 9, 6, 8, 5, 2, 3, 4, 8, 3, 7, 0, 2, 5, 3, 1, 3, 9, 8
OFFSET
0,1
EXAMPLE
0.6009668516136754857157052646318381206772279921330513588502639401916921204...
MATHEMATICA
RealDigits[x /. FindRoot[1 + 3^x == 6^x, {x, 1}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Jun 28 2023 *)
PROG
(PARI) print(c=solve(x=0, 1, 1+3^x-6^x)); digits(c\.1^default(realprecision))[^-1] \\ [^-1] to discard possibly incorrect last digit. Use e.g. \p999 to get more digits. - M. F. Hasler, Oct 31 2019
CROSSREFS
Cf. A329337 (continued fraction).
Cf. A242208 (1 + 2^x = 4^x), A328900 (2^x + 3^x = 4^x), A328904 (1 + 3^x = 5^x), A328905 (1 + 2^x = 5^x), A328906 (1 + 2^x = 6^x).
Sequence in context: A368206 A021866 A258760 * A211916 A037215 A028592
KEYWORD
nonn,cons
AUTHOR
M. F. Hasler, Nov 11 2019
STATUS
approved