login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329337
Continued fraction of A328907 = 0.6009668516..., solution to 1 + 3^x = 6^x.
3
0, 1, 1, 1, 1, 40, 1, 3, 2, 1, 2, 23, 1, 13, 1, 8, 1, 15, 2, 3, 103, 4, 10, 4, 2, 2, 2, 1, 1, 84, 1, 4, 1, 3, 1, 1, 5, 1, 7, 23, 8, 1, 8, 24, 1, 1, 2, 12, 39, 14, 19, 3, 4, 8, 3, 2, 1, 4, 1, 8, 1, 1, 1, 2, 1, 10, 1, 35, 1, 10, 2, 2, 2, 1, 1, 15, 2, 3, 1, 4, 7, 5, 1, 9, 1, 1, 1, 1, 2, 3, 3, 2, 1, 4, 54, 4, 1, 3, 2, 1, 1, 1, 1, 4, 22, 1, 4, 3, 1, 1, 1, 2, 6, 1, 1, 4, 1, 8, 1, 20
OFFSET
0,6
EXAMPLE
0.6009668516... = 0 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(40 + 1/(1 + 1/(3 + ...)))))))
MATHEMATICA
ContinuedFraction[x/.FindRoot[1+3^x==6^x, {x, 1}, WorkingPrecision->150]] (* Harvey P. Dale, Jun 13 2022 *)
PROG
(PARI) contfrac(c=solve(x=0, 1, 1+3^x-6^x))[^-1] \\ discarding possibly incorrect last term. Use e.g. \p999 to get more terms. - M. F. Hasler, Oct 31 2019
CROSSREFS
Cf. A328912 (cont. frac. of A242208: 1 + 2^x = 4^x), A328913 (cont. frac. of A328900: 2^x + 3^x = 4^x), A329335 (cont. frac. of A328905: 1 + 2^x = 5^x).
Sequence in context: A013420 A156917 A176644 * A078084 A037937 A126652
KEYWORD
nonn,cofr
AUTHOR
M. F. Hasler, Nov 11 2019
STATUS
approved