OFFSET
1,2
COMMENTS
Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). Let m be natural number. The order of the list:
T(1,1)=1;
T(3,1), T(2,2), T(1,3);
T(1,2), T(2,1);
. . .
T(2*m+1,1), T(2*m,2), T(2*m-1,3),...T(2,2*m), T(1,2*m+1);
T(1,2*m), T(2,2*m-1), T(3,2*m-2),...T(2*m-1,2),T(2*m,1);
. . .
First row contains antidiagonal {T(1,2*m+1), ... T(2*m+1,1)}, read upwards.
Second row contains antidiagonal {T(1,2*m), ... T(2*m,1)}, read downwards.
LINKS
Boris Putievskiy, Rows n = 1..140 of triangle, flattened
Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
Eric Weisstein's World of Mathematics, Pairing functions
FORMULA
EXAMPLE
The start of the sequence as table:
1....5...4..12..11..23..22...
6....3..13..10..24..21..39...
2...14...9..25..20..40..35...
15...8..26..19..41..34..60...
7...27..18..42..33..61..52...
28..17..43..32..62..51..85...
16..44..31..63..50..86..73...
. . .
The start of the sequence as triangle array read by rows:
1;
5,6;
4,3,2;
12,13,14,15;
11,10,9,8,7;
23,24,25,26,27,28;
22,21,20,19,18,17,16;
. . .
Row number r consecutive contains r numbers.
If r is odd, row is decreasing.
If r is even, row is increasing.
PROG
(Python)
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
j=(t*t+3*t+4)/2-n
result=((t+2)**2-2*(t+2)+4-(3*i+j-2)*(-1)**t)/2
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Boris Putievskiy, Feb 22 2013
STATUS
approved