login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221215
T(n,k)= ((n+k)^2-2*(n+k)+4-(n+3*k-2)*(-1)^(n+k))/2; n , k > 0, read by antidiagonals.
3
1, 6, 5, 2, 3, 4, 15, 14, 13, 12, 7, 8, 9, 10, 11, 28, 27, 26, 25, 24, 23, 16, 17, 18, 19, 20, 21, 22, 45, 44, 43, 42, 41, 40, 39, 38, 29, 30, 31, 32, 33, 34, 35, 36, 37, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 91
OFFSET
1,2
COMMENTS
Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). Let m be natural number. The order of the list:
T(1,1)=1;
T(1,3), T(2,2), T(3,1);
T(2,1), T(1,2);
. . .
T(1,2*m+1), T(2,2*m), T(3,2*m-1), ... T(2*m+1,1);
T(2*m,1), T(2*m-1,2), T(2*m-2,3),...T(1,2*m);
. . .
First row contains elements antidiagonal {T(1,2*m+1), ... T(2*m+1,1)}, read downwards.
second row contains elements antidiagonal {T(1,2*m), ... T(2*m,1)}, read upwards.
The same as A211394, except for reversed order in even diagonals. - M. F. Hasler, Feb 26 2013
FORMULA
As table
T(n,k)= ((n+k)^2-2*(n+k)+4-(n+3*k-2)*(-1)^(n+k))/2.
As linear sequence
a(n) = (A003057(n)^2-2*A003057(n)+4-(A002260(n)+3*A004736(n)-2)*(-1)^A003056(n))/2; a(n) = ((t+2)^2-2*(t+2)+4-(i+3*j-2)*(-1)^t)/2,
where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).
EXAMPLE
The start of the sequence as table:
1....6...2..15...7..28..16...
5....3..14...8..27..17..44...
4...13...9..26..18..43..31...
12..10..25..19..42..32..63...
11..24..20..41..33..62..50...
23..21..40..34..61..51..86...
22..39..35..60..52..85..73...
. . .
The start of the sequence as triangle array read by rows:
1;
6,5;
2,3,4;
15,14,13,12;
7,8,9,10,11;
28,27,26,25,24,23;
16,17,18,19,20,21,22;
. . .
Row number r contains r consecutive numbers.
If r is odd, row is increasing.
If r is even, row is decreasing.
MATHEMATICA
T[n_, k_] := ((n+k)^2 - 2(n+k) + 4 - (n+3k-2)(-1)^(n+k))/2;
Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 05 2019 *)
PROG
(Python)
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
j=(t*t+3*t+4)/2-n
result=((t+2)**2-2*(t+2)+4-(i+3*j-2)*(-1)**t)/2
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Boris Putievskiy, Feb 22 2013
STATUS
approved