login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112282
a(n) = (-1)^n*(2*n+1) (mod 9).
1
1, 6, 5, 2, 0, 7, 4, 3, 8, 8, 3, 4, 7, 0, 2, 5, 6, 1, 1, 6, 5, 2, 0, 7, 4, 3, 8, 8, 3, 4, 7, 0, 2, 5, 6, 1, 1, 6, 5, 2, 0, 7, 4, 3, 8, 8, 3, 4, 7, 0, 2, 5, 6, 1, 1, 6, 5, 2, 0, 7, 4, 3, 8, 8, 3, 4, 7, 0, 2, 5, 6, 1, 1, 6, 5, 2, 0, 7, 4, 3, 8, 8, 3, 4, 7, 0, 2, 5, 6, 1, 1, 6, 5, 2, 0, 7, 4, 3, 8, 8, 3, 4, 7, 0, 2
OFFSET
0,2
FORMULA
Period 18 sequence: [1, 6, 5, 2, 0, 7, 4, 3, 8, 8, 3, 4, 7, 0, 2, 5, 6, 1].
MAPLE
seq(`mod`((-1)^n*(2*n+1), 9), n = 0..120); # G. C. Greubel, Nov 05 2019
MATHEMATICA
Table[Mod[(-1)^n*(2*n+1), 9], {n, 0, 120}] (* G. C. Greubel, Nov 05 2019 *)
Mod[Times@@@Partition[Riffle[Range[1, 221, 2], {1, -1}, {1, -1, 2}], 2], 9] (* Harvey P. Dale, Jan 06 2024 *)
PROG
(PARI) a(n)=((-1)^n*(2*n+1))%9
(Magma) [(-1)^n*(2*n+1) mod 9 : n in [0..120]]; // G. C. Greubel, Nov 05 2019
(Sage) [mod((-1)^n*(2*n+1), 9) for n in (0..120)] # G. C. Greubel, Nov 05 2019
(GAP) List([0..120], n-> (-1)^n*(2*n+1) mod 9 ); # G. C. Greubel, Nov 05 2019
CROSSREFS
Cf. A112280.
Sequence in context: A102079 A177938 A374529 * A098866 A144689 A221215
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 01 2005
STATUS
approved