login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112280
Coefficients, read modulo 9, of the cube of q-series (q;q)_oo.
3
1, 6, 0, 5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
The cube-root of g.f. A(x) is an integer series (A112281).
LINKS
FORMULA
G.f.: A(x) = Sum_{n>=0} A112282(n) * x^(n*(n+1)/2) where A112282(n) = (-1)^n*(2*n+1) (mod 9).
EXAMPLE
A(x) = 1 + 6*x + 5*x^3 + 2*x^6 + 0*x^10 + 7*x^15 + 4*x^21 +... = (1 - 3*x + 5*x^3 - 7*x^6 + 9*x^10 - 11*x^15 +...) (mod 9).
A(x)^(1/3) = 1 + 2*x - 4*x^2 + 15*x^3 - 60*x^4 + 268*x^5 -+...
Notation: q-series (q;q)_oo = Product_{n>=1} (1-q^n) = 1 + Sum_{n>=1} (-1)^n*[q^(n*(3*n-1)/2) + q^(n*(3*n+1)/2)].
MAPLE
seq(coeff(series( add(`mod`((-1)^n*(2*n+1), 9)*x^(n*(n+1)/2), n = 0 .. 140), x, n+1), x, n), n = 0 .. 120); # G. C. Greubel, Nov 05 2019
MATHEMATICA
CoefficientList[Series[ Sum[Mod[(-1)^n*(2*n+1), 9]* x^(n(n+1)/2), {n, 0, 140}] , {x, 0, 120}], x] (* G. C. Greubel, Nov 05 2019 *)
PROG
(PARI) {a(n)=polcoeff(sum(k=0, sqrtint(2*n+1), (((-1)^k*(2*k+1))%9)*x^(k*(k+1)/2)+x*O(x^n)), n)}
(Magma) R<x>:=PowerSeriesRing(Integers(), 120); Coefficients(R!( (&+[((-1)^n*(2*n+1) mod 9)*x^Binomial(n+1, 2): n in [0..140]]) )); // G. C. Greubel, Nov 05 2019
(Sage) [ (sum(((-1)^n*(2*n+1)%9) *x^(n*(n+1)/2) for n in (0..140)) ).series(x, n+1).list()[n] for n in (0..120)] # G. C. Greubel, Nov 05 2019
CROSSREFS
Cf. A112281 (A(x)^(1/3)), A112282 (nonzero terms), A111983 (variant).
Sequence in context: A196623 A265275 A113024 * A204850 A202394 A202954
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 01 2005
STATUS
approved