login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients, read modulo 9, of the cube of q-series (q;q)_oo.
3

%I #9 Sep 08 2022 08:45:21

%S 1,6,0,5,0,0,2,0,0,0,0,0,0,0,0,7,0,0,0,0,0,4,0,0,0,0,0,0,3,0,0,0,0,0,

%T 0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,4,0,

%U 0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

%N Coefficients, read modulo 9, of the cube of q-series (q;q)_oo.

%C The cube-root of g.f. A(x) is an integer series (A112281).

%H G. C. Greubel, <a href="/A112280/b112280.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: A(x) = Sum_{n>=0} A112282(n) * x^(n*(n+1)/2) where A112282(n) = (-1)^n*(2*n+1) (mod 9).

%e A(x) = 1 + 6*x + 5*x^3 + 2*x^6 + 0*x^10 + 7*x^15 + 4*x^21 +... = (1 - 3*x + 5*x^3 - 7*x^6 + 9*x^10 - 11*x^15 +...) (mod 9).

%e A(x)^(1/3) = 1 + 2*x - 4*x^2 + 15*x^3 - 60*x^4 + 268*x^5 -+...

%e Notation: q-series (q;q)_oo = Product_{n>=1} (1-q^n) = 1 + Sum_{n>=1} (-1)^n*[q^(n*(3*n-1)/2) + q^(n*(3*n+1)/2)].

%p seq(coeff(series( add(`mod`((-1)^n*(2*n+1),9)*x^(n*(n+1)/2), n = 0 .. 140), x, n+1), x, n), n = 0 .. 120); # _G. C. Greubel_, Nov 05 2019

%t CoefficientList[Series[ Sum[Mod[(-1)^n*(2*n+1), 9]* x^(n(n+1)/2), {n, 0, 140}] , {x, 0, 120}], x] (* _G. C. Greubel_, Nov 05 2019 *)

%o (PARI) {a(n)=polcoeff(sum(k=0,sqrtint(2*n+1), (((-1)^k*(2*k+1))%9)*x^(k*(k+1)/2)+x*O(x^n)),n)}

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 120); Coefficients(R!( (&+[((-1)^n*(2*n+1) mod 9)*x^Binomial(n+1,2): n in [0..140]]) )); // _G. C. Greubel_, Nov 05 2019

%o (Sage) [ (sum(((-1)^n*(2*n+1)%9) *x^(n*(n+1)/2) for n in (0..140)) ).series(x,n+1).list()[n] for n in (0..120)] # _G. C. Greubel_, Nov 05 2019

%Y Cf. A112281 (A(x)^(1/3)), A112282 (nonzero terms), A111983 (variant).

%K nonn

%O 0,2

%A _Paul D. Hanna_, Sep 01 2005