login
A177938
Triangle T(n,k) = (-1)^(k+n)*A054655(n,n-k), 0<=k<n, read by rows.
0
1, 1, 1, 6, 5, 1, 60, 47, 12, 1, 840, 638, 179, 22, 1, 15120, 11274, 3325, 485, 35, 1, 332640, 245004, 74524, 11985, 1075, 51, 1, 8648640, 6314664, 1961470, 336049, 34300, 2086, 70, 1, 259459200, 188204400, 59354028, 10630508, 1182769, 83720
OFFSET
0,4
FORMULA
Row generating function: Gamma(x+2n)/Gamma(x+n) = Sum_{k>=0) T(n,k)*x^k.
T(n, k) = n!*(-1)^k*[x^k] hypergeom([-n, -x + n - 1], [-n], 1). - Peter Luschny, Mar 22 2022
EXAMPLE
[0] 1;
[1] 1, 1;
[2] 6, 5, 1;
[3] 60, 47, 12, 1;
[4] 840, 638, 179, 22, 1;
[5] 15120, 11274, 3325, 485, 35, 1;
[6] 332640, 245004, 74524, 11985, 1075, 51, 1;
[7] 8648640, 6314664, 1961470, 336049, 34300, 2086, 70, 1;
[8] 259459200, 188204400, 59354028, 10630508, 1182769, 83720, 3682, 92, 1;
MATHEMATICA
p[x_, n_] = If[n == 0, 1, (n - 1)! / FunctionExpand[Beta[x + n, n]]];
Table[CoefficientList[p[x, n], x], {n, 0, 8}] // Flatten (* rewritten by Peter Luschny, Mar 22 2022 *)
CROSSREFS
An unsigned, row-reversed variant of A054655.
Row sums are apparently A001813(n).
Sequence in context: A238181 A197517 A102079 * A374529 A112282 A098866
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, May 15 2010
STATUS
approved