login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144689
A098777 mod 7.
2
1, 6, 5, 2, 2, 2, 2, 4, 1, 6, 6, 6, 6, 5, 3, 4, 4, 4, 4, 1, 2, 5, 5, 5, 5, 3, 6, 1, 1, 1, 1, 2, 4, 3, 3, 3, 3, 6, 5, 2, 2, 2, 2, 4, 1, 6, 6, 6, 6, 5, 3, 4, 4, 4, 4, 1, 2, 5, 5, 5, 5, 3, 6, 1, 1, 1, 1, 2, 4, 3, 3, 3, 3, 6, 5, 2, 2, 2, 2, 4, 1, 6, 6, 6, 6, 5, 3, 4, 4, 4, 4, 1, 2, 5, 5, 5, 5, 3, 6, 1, 1
OFFSET
0,2
LINKS
R. Bacher and P. Flajolet, Pseudo-factorials, Elliptic Functions and Continued Fractions, arXiv:0901.1379 [math.CA], 2009.
FORMULA
For n >= 0 has period 36.
From Chai Wah Wu, Jun 09 2016: (Start)
a(n) = a(n-1) - a(n-18) + a(n-19) for n > 19.
G.f.: (1 + 5*x - x^2 - 3*x^3 + 2*x^7 - 3*x^8 + 5*x^9 - x^13 - 2*x^14 + x^15 + x^18 + 2*x^19)/(1 - x + x^18 - x^19). (End)
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, (-1)^n*add(binomial(n-1, k)*a(k)*a(n-1-k), k=0..n-1)) end: seq(modp(a(n), 7), n=0..100); # Muniru A Asiru, Jul 29 2018
MATHEMATICA
b[0] = 1; b[n_] := b[n] = (-1)^n Sum[Binomial[n-1, k] b[k] b[n-k-1], {k, 0, n-1}];
a[n_] := Mod[b[n], 7]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 29 2018 *)
CROSSREFS
Sequence in context: A374529 A112282 A098866 * A221215 A199180 A197265
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 08 2009
STATUS
approved