login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098777
Pseudo-factorials: a(0)=1, a(n+1) = (-1)^(n+1) * Sum_{k=0..n} binomial(n,k) * a(k)*a(n-k), n>=0.
4
1, -1, -2, 2, 16, -40, -320, 1040, 12160, -52480, -742400, 3872000, 66457600, -411136000, -8202444800, 58479872000, 1335009280000, -10791497728000, -277035646976000, 2502527565824000, 71391934873600000, -712816377856000000, -22367684235100160000, 244597236078018560000
OFFSET
0,3
COMMENTS
A variation on the usual factorials (which satisfy the recursion (n+1)!=sum('binomial(n,k)*k!*(n-k)!','k'=0..n) for n>=0).
This sequence seems to satisfy an analog of Wilson's Theorem (which states that (p-1)! equals -1 modulo p for p a prime): For p<10000 a prime congruent to 2 modulo 3, we have a(p-1) congruent to 1 mod p and a(n) congruent to 0 mod p for n>p. For p<10000 a prime congruent to 1 mod 3 we have a(p-1)+a(p) congruent to -1 modulo p.
On the analytic side, the sequence is closely related (via its exponential generating series) to the elliptic curve of j-invariant O (corresponding to the regular hexagonal lattice).
This sequence has a generating function expressible in terms of the Dixon elliptic function sm(x,0) whose coefficients are A104133. The ordinary generating function has a continued fraction expansion of Jacobi type: the numerators are -j^2*(2-(-1)^j) and the denominators are (-1)^(j-1)(j+1/2+(-1)^j/2). - Philippe Flajolet and Roland Bacher, Jan 18 2009
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..464 (first 101 terms from T. D. Noe)
R. Bacher and P. Flajolet, Pseudo-factorials, Elliptic Functions and Continued Fractions, arXiv:0901.1379 [math.CA], 2009.
P. Flajolet, Research Papers
Maxim V. Polyakov, Kirill M. Semenov-Tian-Shansky, Alexander O. Smirnov, Alexey A. Vladimirov, Quasi-Renormalizable Quantum Field Theories, arXiv:1811.08449 [hep-th], 2018.
FORMULA
The exponential generating function f(z) = Sum_{n>=0} a(n) * z^n/n! satisfies f'(z)=-f(-z)^2 and is an elliptic function with respect to a regular hexagonal lattice (moreover, -f(z)f(-z) is (up to translation) a Weierstrass function.
a(n) = -n!/R^(n+1)*sum(b^(8*p+4*q)/((p-1/2)*b+(q-1/2)/b)^(n+1), p = -infinity..infinity, q = -infinity..infinity), where b = exp(I*Pi/6) and R = 2^(-4/3)/Pi*GAMMA(1/3)^3. - Philippe Flajolet and Roland Bacher, Jan 18 2009
G.f.: 1/Q(0), where Q(k) = 1 + (2*k+1)*x + 3*x^2*(2*k+1)^2/(1 - (2*k+1)*x + x^2*(2*k+2)^2/Q(k+1) ); (continued fraction after P. Flajolet). - Sergei N. Gladkovskii, Dec 05 2013
E.g.f.: (1 - 3*Series_Reversion( Integral 1/(1 - 9*x^2)^(2/3) dx ))^(1/3). - Paul D. Hanna, Apr 10 2014
EXAMPLE
G.f. = 1 - x - 2*x^2 + 2*x^3 + 16*x^4 - 40*x^5 - 320*x^6 + 1040*x^7 + ...
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, (-1)^n*add(
binomial(n-1, k) *a(k) *a(n-1-k), k=0..n-1))
end:
seq(a(n), n=0..25); # Alois P. Heinz, May 22 2018
MATHEMATICA
max = 23; f[z_] = Sum[a[n]*(z^n/n!), {n, 0, max}]; a[0] = 1; a[1] = -1; eq = Rest[ Thread[ CoefficientList[f'[z] + f[-z]^2, z] == 0]]; sol = Solve[ Drop[eq, -max-1]][[1]]; Table[a[n], {n, 0, max}] /. sol (* Jean-François Alcover, Oct 05 2011 *)
a[0] = 1; a[n_] := a[n] = (-1)^n*Sum[Binomial[n-1, k]*a[k]*a[n-k-1], {k, 0, n-1}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 15 2015 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (1 - 3 InverseSeries[ Integrate[ Series[ (1 - 9 x^2)^(-2/3), {x, 0, n}], x]])^(1/3), {x, 0, n}]]; (* Michael Somos, May 22 2018 *)
Table[SeriesCoefficient[With[{wp = WeierstrassP[z, {0, 4/27}], pd = WeierstrassPPrime[z, {0, 4/27}]}, (2 (2 - 9 pd + 9 wp (2 + 3 pd + 3 wp^2)))/((9 pd + 2 (1 - 3 wp)^2) (2 + 3 wp))], {z, 0, n}] n!, {n, 0, 23}] (* Jan Mangaldan, Jul 07 2020 *)
nmax = 25; CoefficientList[(1 - 3*InverseSeries[Series[x*Hypergeometric2F1[1/2, 2/3, 3/2, 9*x^2], {x, 0, nmax}]])^(1/3), x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 07 2020 *)
PROG
(PARI) a(n)=local(A=1); A=(1-3*serreverse(intformal(1/(1-9*x^2 +x*O(x^n))^(2/3))))^(1/3); n!*polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Apr 10 2014
CROSSREFS
KEYWORD
sign
AUTHOR
Roland Bacher, Oct 04 2004
STATUS
approved