login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144750
A098777 mod 9.
2
1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1
OFFSET
0,2
LINKS
R. Bacher and P. Flajolet, Pseudo-factorials, Elliptic Functions and Continued Fractions, arXiv:0901.1379 [math.CA], 2009.
FORMULA
From Chai Wah Wu, Nov 30 2018: (Start)
a(n) = a(n-2) + a(n-3) - a(n-5) - a(n-6) + a(n-8) for n > 7 (conjectured).
G.f.: (-8*x^7 - 4*x^6 + 3*x^5 + 8*x^4 + 7*x^3 - 6*x^2 - 8*x - 1)/((x - 1)*(x + 1)*(x^6 - x^3 + 1)) (conjectured). (End)
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, (-1)^n*add(binomial(n-1, k)*a(k)*a(n-1-k), k=0..n-1)) end: seq(modp(a(n), 9), n=0..100); # Muniru A Asiru, Jul 29 2018
MATHEMATICA
b[0] = 1;
b[n_] := b[n] = (-1)^n Sum[Binomial[n-1, k] b[k] b[n-k-1], {k, 0, n-1}];
a[n_] := Mod[b[n], 9]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 29 2018 *)
CROSSREFS
Sequence in context: A179044 A084254 A255696 * A198928 A155068 A244839
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 08 2009
STATUS
approved