login
A144748
Recurrence sequence a(n)=a(n-1)^2-a(n-1)-1, a(0)=8.
5
8, 55, 2969, 8811991, 77651176572089, 6029705223029665929437251831, 36357345076631233348346773693633697407708655232275600729, 1321856541021241383115043586121503961331042183698683965174269952435581223368633124721267107619465028785549730711
OFFSET
0,1
COMMENTS
a(0)=3 is the smallest integer generating an increasing sequence of the form a(n)=a(n-1)^2-a(n-1)-1, cf. A144743.
FORMULA
a(n)=a(n-1)^2-a(n-1)-1 and a(0)=8.
a(n) ~ c^(2^n), where c = 7.3813237216360344087566795911708086794628396333350474334044779783264... . - Vaclav Kotesovec, May 06 2015
MATHEMATICA
a = {}; k = 8; Do[k = k^2 - k - 1; AppendTo[a, k], {n, 1, 10}]; a
NestList[#^2-#-1&, 8, 10] (* Harvey P. Dale, Mar 14 2016 *)
PROG
(PARI) a(n, s=8)={for(i=1, n, s=s^2-s-1); s} \\ M. F. Hasler, Oct 06 2014
KEYWORD
nonn
AUTHOR
Artur Jasinski, Sep 20 2008
EXTENSIONS
Edited by M. F. Hasler, Oct 06 2014
STATUS
approved