login
A144746
a(n) = a(n-1)^2 - a(n-1) - 1, a(0)=6.
5
6, 29, 811, 656909, 431528777371, 186217085698878552894269, 34676803006183479266409218250231853558140150091, 1202480666729655584789949373132702064208272454072740050128160074167965751208292536045867158189
OFFSET
0,1
COMMENTS
a(0)=3 is the smallest integer generating an increasing sequence of the form a(n) = a(n-1)^2 - a(n-1) - 1, cf. A144743.
FORMULA
a(n) = a(n-1)^2 - a(n-1) - 1 and a(0)=6.
a(n) ~ c^(2^n), where c = 5.33565954034691307256446890777476398311129407641143635105306409567572... . - Vaclav Kotesovec, May 06 2015
MATHEMATICA
NestList[#^2-#-1&, 6, 8] (* Harvey P. Dale, Jan 22 2011 *)
PROG
(PARI) a(n, s=6)={for(i=1, n, s=s^2-s-1); s} \\ M. F. Hasler, Oct 06 2014
KEYWORD
nonn
AUTHOR
Artur Jasinski, Sep 20 2008
EXTENSIONS
Corrected and edited by M. F. Hasler, Oct 06 2014
STATUS
approved