login
Recurrence sequence a(n)=a(n-1)^2-a(n-1)-1, a(0)=8.
5

%I #13 Mar 14 2016 19:09:52

%S 8,55,2969,8811991,77651176572089,6029705223029665929437251831,

%T 36357345076631233348346773693633697407708655232275600729,

%U 1321856541021241383115043586121503961331042183698683965174269952435581223368633124721267107619465028785549730711

%N Recurrence sequence a(n)=a(n-1)^2-a(n-1)-1, a(0)=8.

%C a(0)=3 is the smallest integer generating an increasing sequence of the form a(n)=a(n-1)^2-a(n-1)-1, cf. A144743.

%F a(n)=a(n-1)^2-a(n-1)-1 and a(0)=8.

%F a(n) ~ c^(2^n), where c = 7.3813237216360344087566795911708086794628396333350474334044779783264... . - _Vaclav Kotesovec_, May 06 2015

%t a = {}; k = 8; Do[k = k^2 - k - 1; AppendTo[a, k], {n, 1, 10}]; a

%t NestList[#^2-#-1&,8,10] (* _Harvey P. Dale_, Mar 14 2016 *)

%o (PARI) a(n, s=8)={for(i=1, n, s=s^2-s-1); s} \\ _M. F. Hasler_, Oct 06 2014

%Y Cf. A000058, A082732, A144743, A144744, A144745, A144746, A144747.

%K nonn

%O 0,1

%A _Artur Jasinski_, Sep 20 2008

%E Edited by _M. F. Hasler_, Oct 06 2014