login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A230963 Values of y such that x^2 + y^2 = 73^n with x and y coprime and 0 < x < y. 2
8, 55, 549, 5280, 44403, 325008, 2685304, 27358559, 241709752, 1870181225, 12766175931, 138963670560, 1291487885997, 10519458225072, 74032715923371, 690521409218881, 6773980286782088, 57975621715535095, 433109386513469096, 3345582274543898400 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The corresponding x-values are in A230962.

LINKS

Robert Israel, Table of n, a(n) for n = 1..1000

Chris Busenhart, Lorenz Halbeisen, Norbert Hungerbühler, and Oliver Riesen, On primitive solutions of the Diophantine equation x^2+ y^2= M, Eidgenössische Technische Hochschule (ETH Zürich, Switzerland, 2020).

FORMULA

From Robert Israel, Mar 31 2017: (Start)

a(n) = max(abs(Re((3+8i)^n)), abs(Im((3+8i)^n))).

a(n) = abs(Im(3+8i)^n) if and only if 1/4 < frac(n*arctan(8/3)/Pi) < 3/4.(End)

EXAMPLE

a(3)=549 because 296^2 + 549^2 = 389017 = 73^3.

MAPLE

f:=n ->  max([abs@Re, abs@Im]((3+8*I)^n)):

map(f, [$1..50]); # Robert Israel, Mar 31 2017

MATHEMATICA

Table[Max[Abs[Re[(3 + 8I)^n]], Abs[Im[(3 + 8I)^n]]], {n, 30}] (* Indranil Ghosh, Mar 31 2017, after formula by Robert Israel *)

PROG

(Python)

from sympy import I, re, im

print([max(abs(re((3 + 8*I)**n)), abs(im((3 + 8*I)**n))) for n in range(1, 31)]) # Indranil Ghosh, Mar 31 2017, after formula by Robert Israel

CROSSREFS

Cf. A230962.

Cf. A188949, A230623, A230645, A230711, A230713, A230744, A230760, A230842.

Sequence in context: A019484 A108984 A264342 * A209114 A264644 A144748

Adjacent sequences:  A230960 A230961 A230962 * A230964 A230965 A230966

KEYWORD

nonn

AUTHOR

Colin Barker, Nov 02 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 04:34 EST 2022. Contains 350565 sequences. (Running on oeis4.)