login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230963
Values of y such that x^2 + y^2 = 73^n with x and y coprime and 0 < x < y.
2
8, 55, 549, 5280, 44403, 325008, 2685304, 27358559, 241709752, 1870181225, 12766175931, 138963670560, 1291487885997, 10519458225072, 74032715923371, 690521409218881, 6773980286782088, 57975621715535095, 433109386513469096, 3345582274543898400
OFFSET
1,1
COMMENTS
The corresponding x-values are in A230962.
LINKS
Chris Busenhart, Lorenz Halbeisen, Norbert Hungerbühler, and Oliver Riesen, On primitive solutions of the Diophantine equation x^2+ y^2= M, Eidgenössische Technische Hochschule (ETH Zürich, Switzerland, 2020).
FORMULA
From Robert Israel, Mar 31 2017: (Start)
a(n) = max(abs(Re((3+8i)^n)), abs(Im((3+8i)^n))).
a(n) = abs(Im(3+8i)^n) if and only if 1/4 < frac(n*arctan(8/3)/Pi) < 3/4.(End)
EXAMPLE
a(3)=549 because 296^2 + 549^2 = 389017 = 73^3.
MAPLE
f:=n -> max([abs@Re, abs@Im]((3+8*I)^n)):
map(f, [$1..50]); # Robert Israel, Mar 31 2017
MATHEMATICA
Table[Max[Abs[Re[(3 + 8I)^n]], Abs[Im[(3 + 8I)^n]]], {n, 30}] (* Indranil Ghosh, Mar 31 2017, after formula by Robert Israel *)
PROG
(Python)
from sympy import I, re, im
print([max(abs(re((3 + 8*I)**n)), abs(im((3 + 8*I)**n))) for n in range(1, 31)]) # Indranil Ghosh, Mar 31 2017, after formula by Robert Israel
KEYWORD
nonn
AUTHOR
Colin Barker, Nov 02 2013
STATUS
approved