|
|
A230623
|
|
Values of y such that x^2 + y^2 = 17^n with x and y coprime and 0 < x < y.
|
|
9
|
|
|
4, 15, 52, 240, 1121, 4888, 20047, 77280, 277441, 1093425, 5279468, 23647519, 99429196, 393425745, 1457109628, 4968639359, 24553864319, 113193708472, 488133974353, 1980778750800, 7547952442399, 26710380775592, 112605054449252
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The corresponding x-values are in A230622.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..200
Chris Busenhart, Lorenz Halbeisen, Norbert Hungerbühler, Oliver Riesen, On primitive solutions of the Diophantine equation x^2+ y^2= M, Eidgenössische Technische Hochschule (ETH Zürich, Switzerland, 2020).
|
|
EXAMPLE
|
a(2)=15 because 8^2 + 15^2 = 289 = 17^2.
|
|
MATHEMATICA
|
Table[Select[PowersRepresentations[17^n, 2, 2], CoprimeQ@@#&][[1, 2]], {n, 1, 40}] (* Vincenzo Librandi, Mar 02 2014 *)
|
|
CROSSREFS
|
Cf. A001026, A188949, A230622.
Sequence in context: A027295 A208722 A057332 * A162978 A171309 A210781
Adjacent sequences: A230620 A230621 A230622 * A230624 A230625 A230626
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Colin Barker, Oct 26 2013
|
|
STATUS
|
approved
|
|
|
|