OFFSET
2,3
COMMENTS
David J. Seal found that the number 255987 is fixed by the map described in A230625 (or equally A287874), so a(255987) = -1. - N. J. A. Sloane, Jun 15 2017
I also observe that the numbers 1007 and 1269 are mapped to each other by that map, as are the numbers 1503 and 3751 (see the b-file submitted by Chai Wah Wu for A230625). So a(1007) = a(1269) = a(1503) = a(3751) = -1. - David J. Seal, Jun 16 2017
a(217) = a(255) = a(446) = a(558) = a(717) = a(735) = a(775) = a(945) = a(958) = -1 since the trajectory either converges to (1007,1269) or to (1503,3751). 255987 has several preimages, e.g. a(7^25*31^19) = a(3^28*7^7*19) = a(7^12*31^51) = -1. a(3568) = 74 ending in the prime 318792605899852268194734519209581. - Chai Wah Wu, Jun 16 2017
See A287878 for the trajectory of 234, which ends at a prime at step 103. - N. J. A. Sloane, Jun 18 2017
See A288894 for the trajectory of 3932. - Sean A. Irvine, Jun 18 2017
LINKS
Sean A. Irvine, Table of n, a(n) for n = 2..10000 (terms 2..3931 from Chai Wah Wu)
EXAMPLE
Starting at 18: 18 = 2*3^2 = 10*11^10 in binary -> 101110 = 46 = 2*23 = 10*10111 -> 1010111 = 87 = 3*29 = 11*11101 -> 1111101 = 125 = 5^3 = 101^11 -> 10111 = 23, prime, taking 4 steps, so a(18) = 4.
MATHEMATICA
fn[n_] := FromDigits[Flatten[IntegerDigits[ReplaceAll[FactorInteger[n], {x_, 1} -> {x}], 2]], 2];
Map[Length, Table[NestWhileList[fn, n, # != 1 && ! PrimeQ[#] &], {n, 2, 40}], {1}] - 1 (* Robert Price, Mar 16 2020 *)
CROSSREFS
KEYWORD
sign,base
AUTHOR
N. J. A. Sloane, Oct 27 2013
EXTENSIONS
More terms from Chai Wah Wu, Jul 15 2014
STATUS
approved