login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293305
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} (1 + Sum_{j=1..k} (-1)^j*j*x^(j*i)).
6
1, 1, 0, 1, -1, 0, 1, -1, -1, 0, 1, -1, 1, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, -3, 0, 1, 0, 1, -1, 1, -3, 0, -3, 0, 0, 1, -1, 1, -3, 4, 0, 4, 1, 0, 1, -1, 1, -3, 4, 0, 4, -3, 0, 0, 1, -1, 1, -3, 4, -5, 0, -3, 4, 0, 0, 1, -1, 1, -3, 4, -5, 0, -7, -2, -2, 0, 0, 1, -1, 1
OFFSET
0,25
LINKS
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
0, -1, -1, -1, -1, ...
0, -1, 1, 1, 1, ...
0, 0, 0, -3, -3, ...
0, 0, 0, 0, 4, ...
0, 1, -3, 0, 0, ...
MATHEMATICA
nmax = 12;
col[k_] := col[k] = Product[1+Sum[(-1)^j*j*x^(i*j), {j, 1, k}], {i, 1, 2 nmax}] + O[x]^(2 nmax) // CoefficientList[#, x]&;
A[n_, k_] := If[n == 0, 1, If[k == 0, 0, col[k][[n+1]]]];
Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Feb 21 2021 *)
CROSSREFS
Columns k=0..2 give A000007, A010815, A293072.
Rows n=0 gives A000012.
Main diagonal gives A293306.
Sequence in context: A323878 A046094 A055976 * A316896 A230626 A363946
KEYWORD
sign,tabl,look
AUTHOR
Seiichi Manyama, Oct 05 2017
STATUS
approved