This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055976 Remainder when (n-1)! + 1 is divided by n. 6
 0, 0, 0, 3, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Related to Wilson's theorem. a(n) = 0 iff n = 1 or a prime; a(n) = 1 iff n > 4 is composite; a(n) = 3 iff n = 4. REFERENCES Albert H. Beiler, Recreations in The Theory of Numbers, The Queen of Mathematics Entertains, Second Edition, Dover Publications, Inc., New York, 1966, Page 50. LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 MAPLE P:=proc(q) local n; for n from 0 to q do print((n!+1) mod (n+1)); od; end: P(100); # Paolo P. Lava, Jun 16 2014 MATHEMATICA Do[Print[Mod[(n-1)!+1, n]], {n, 1, 100}] PROG (PARI) A055976(n) = (((n-1)!+1)%n); \\ Antti Karttunen, Aug 27 2017 CROSSREFS Cf. A061007. Sequence in context: A318513 A323878 A046094 * A293305 A316896 A230626 Adjacent sequences:  A055973 A055974 A055975 * A055977 A055978 A055979 KEYWORD easy,nonn AUTHOR Robert G. Wilson v, Jul 23 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 22:22 EDT 2019. Contains 322310 sequences. (Running on oeis4.)