The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061007 a(n) = -(n-1)! mod n. 9
 0, 1, 1, 2, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS The following sequences all appear to have the same parity (with an extra zero term at the start of A010051): A010051, A061007, A035026, A069754, A071574. - Jeremy Gardiner, Aug 09 2002 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 FORMULA a(4) = 2, a(p) = 1 for p prime, a(n) = 0 otherwise. Apart from n = 4, a(n) = A010051(n) = A061006(n)/(n-1). EXAMPLE a(4) = 2 since -(4 - 1)! = -6 = 2 mod 4. a(5) = 1 since -(5 - 1)! = -24 = 1 mod 5. a(6) = 0 since -(6 - 1)! = -120 = 0 mod 6. MAPLE P=proc(n) local a, i, k, w; print(0); for i from 0 by 1 to n do w:=(i! mod (i+2)); print(w); od; end: P(1000); # Paolo P. Lava, Apr 23 2007 MATHEMATICA Table[Mod[-(n - 1)!, n], {n, 100}] (* Alonso del Arte, Mar 20 2014 *) PROG (PARI) A061007(n) = ((-((n-1)!))%n); \\ Antti Karttunen, Aug 27 2017 CROSSREFS Positive for all but the first term of A046022. Cf. A000040, A000142, A010051, A055976, A061006, A061008, A061009. Sequence in context: A269245 A321886 A060154 * A060838 A206567 A085252 Adjacent sequences:  A061004 A061005 A061006 * A061008 A061009 A061010 KEYWORD nonn,easy AUTHOR Henry Bottomley, Apr 12 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 05:23 EST 2020. Contains 332086 sequences. (Running on oeis4.)