login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206567
S(m,n) = (number of nonzero terms common to the base 3 expansions of m and n), a symmetric matrix read by antidiagonals.
1
1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1
OFFSET
1,25
COMMENTS
Every nonnegative integer occurs infinitely many times in the matrix.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10011 (antidiagonals 1 to 141, flattened)
FORMULA
Diagonal entries S(n,n) = A160384(n) since all nonzero digits match. - Robert Israel, Mar 18 2018
EXAMPLE
Northwest corner:
1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 1 1 0 0 0 0 0 0 1 1
1 0 1 2 1 0 1 0 0 1 0 1 2
0 1 1 1 2 0 0 1 0 0 1 1 1
0 0 0 0 0 1 1 1 0 0 0 0 0
1 0 0 1 0 1 2 1 0 1 0 0 1
0 1 0 0 1 1 1 2 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1
1 0 0 1 0 0 1 0 1 2 1 1 2
0 1 0 0 1 0 0 1 1 1 2 1 1
0 0 1 1 1 0 0 0 1 1 1 2 2
1 0 1 2 1 0 1 0 1 2 1 2 3
4 = 3 + 1 and 13 = 3^2 + 3 + 1, so S(13,4)=2.
MAPLE
S:= proc(m, n) local M, N;
M:= convert(m, base, 3);
N:= convert(n, base, 3);
convert(zip((s, t) -> `if`(s=t and s <> 0, 1, 0), M, N), `+`);
end proc:
seq(seq(S(k, n-k+1), k=1..n), n=1..30); # Robert Israel, Mar 19 2018
MATHEMATICA
d[n_] := IntegerDigits[n, 3];
t[n_] := Reverse[Array[d, 100][[n]]]
s[n_, k_] := Position[t[n], k]
t[m_, n_] := Sum[Length[Intersection[s[m, k], s[n, k]]], {k, 1, 2}]
TableForm[Table[t[m, n], {m, 1, 24},
{n, 1, 24}]] (* A206567 as a matrix *)
Flatten[Table[t[i, n + 1 - i], {n, 1, 24},
{i, 1, n}]] (* A206567 as a sequence *)
PROG
(PARI) d(n) = Vecrev(digits(n, 3));
T(n, k) = {my(dn = d(n), dk = d(k), nb = min(#dn, #dk)); sum(i=1, nb, dn[i] && (dn[i] == dk[i])); } \\ Michel Marcus, Mar 19 2018
CROSSREFS
Cf. A160384, A206479 (similar in base 2).
Sequence in context: A060154 A061007 A060838 * A362422 A085252 A250214
KEYWORD
nonn,tabl,base
AUTHOR
Clark Kimberling, Feb 09 2012
EXTENSIONS
Edited by Robert Israel, Mar 19 2018
STATUS
approved