The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A230625 Concatenate prime factorization written in binary, convert back to decimal. 13
1, 2, 3, 10, 5, 11, 7, 11, 14, 21, 11, 43, 13, 23, 29, 20, 17, 46, 19, 85, 31, 43, 23, 47, 22, 45, 15, 87, 29, 93, 31, 21, 59, 81, 47, 174, 37, 83, 61, 93, 41, 95, 43, 171, 117, 87, 47, 83, 30, 86, 113, 173, 53, 47, 91, 95, 115, 93, 59, 349, 61, 95, 119, 22 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
As in A080670 the prime factorization is written as p1^e1*...*pN^eN (except for exponents eK = 1 which are omitted), with all factors and exponents in binary (cf. A007088). Then "^" and "*" signs are dropped, all binary digits are concatenated, and the result is converted back to decimal (base 10). - M. F. Hasler, Jun 21 2017
The first nontrivial fixed point of this function is 255987. Smaller numbers such that a(a(n)) = n are 1007, 1269; 1503, 3751. See A230627 for further information. - M. F. Hasler, Jun 21 2017
255987 is the only nontrivial fixed point less than 10000000. - Benjamin Knight, May 16 2018
LINKS
N. J. A. Sloane, Confessions of a Sequence Addict (AofA2017), slides of invited talk given at AofA 2017, Jun 19 2017, Princeton. Mentions this sequence.
N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
EXAMPLE
6 = 2*3 = (in binary) 10*11 -> 1011 = 11 in base 10, so a(6) = 11.
20 = 2^2*5 = (in binary) 10^10*101 -> 1010101 = 85 in base 10, so a(20) = 85.
MAPLE
# take ifsSorted from A080670
A230625 := proc(n)
local Ldgs, p, eb, pb, b ;
b := 2;
if n = 1 then
return 1;
end if;
Ldgs := [] ;
for p in ifsSorted(n) do
pb := convert(op(1, p), base, b) ;
Ldgs := [op(pb), op(Ldgs)] ;
if op(2, p) > 1 then
eb := convert(op(2, p), base, b) ;
Ldgs := [op(eb), op(Ldgs)] ;
end if;
end do:
add( op(e, Ldgs)*b^(e-1), e=1..nops(Ldgs)) ;
end proc:
seq(A230625(n), n=1..30) ; # R. J. Mathar, Aug 05 2017
MATHEMATICA
Table[FromDigits[#, 2] &@ Flatten@ Map[IntegerDigits[#, 2] &, FactorInteger[n] /. {p_, 1} :> {p}], {n, 64}] (* Michael De Vlieger, Jun 23 2017 *)
PROG
(Python)
import sympy
[int(''.join([bin(y)[2:] for x in sorted(sympy.ntheory.factorint(n).items()) for y in x if y != 1]), 2) for n in range(2, 100)] # compute a(n) for n > 1
# Chai Wah Wu, Jul 15 2014
(PARI) a(n) = {if (n==1, return(1)); f = factor(n); s = []; for (i=1, #f~, s = concat(s, binary(f[i, 1])); if (f[i, 2] != 1, s = concat(s, binary(f[i, 2]))); ); subst(Pol(s), x, 2); } \\ Michel Marcus, Jul 15 2014
(PARI) A230625(n)=n>1||return(1); fold((x, y)->if(y>1, x<<logint(y<<1, 2)+y, x), concat(Col(factor(n))~)) \\ M. F. Hasler, Jun 21 2017
CROSSREFS
See A289667 for the base 3 version.
See A291803 for partial sums.
Sequence in context: A213962 A216937 A351629 * A048985 A337183 A348058
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Oct 27 2013
EXTENSIONS
More terms from Chai Wah Wu, Jul 15 2014
Added self-contained definition. - M. F. Hasler, Jun 21 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 10:56 EDT 2024. Contains 372824 sequences. (Running on oeis4.)