|
|
A230621
|
|
Number of permutations of [n] with exactly two (possibly overlapping) occurrences of the consecutive step pattern {up}^2.
|
|
3
|
|
|
0, 0, 0, 0, 1, 8, 86, 803, 8221, 86214, 966114, 11405511, 142934124, 1892755874, 26487024478, 390658292572, 6063383527327, 98824236282650, 1688354110698402, 30179347977813309, 563462569163994435, 10970288500929001986, 222384832378410907480
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ c * (3*sqrt(3)/(2*Pi))^n * n! * n^2, where c = 0.0359701024355206... . - Vaclav Kotesovec, Sep 06 2014
|
|
EXAMPLE
|
a(4) = 1: 1234.
a(5) = 8: 12354, 12453, 13452, 21345, 23451, 31245, 41235, 51234.
a(6) = 86: 123546, 123645, 123654, ..., 631245, 641235, 651234.
a(7) = 803: 1235476, 1236475, 1236547, ..., 7631245, 7641235, 7651234.
|
|
MAPLE
|
b:= proc(u, o, t) option remember;
`if`(t=7, 0, `if`(u+o=0, `if`(t in [4, 6], 1, 0),
add(b(u-j, o+j-1, [1, 1, 5, 6, 5, 6][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 3, 4, 7, 3, 4][t]), j=1..o)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25);
|
|
MATHEMATICA
|
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1,
Sum[b[u - j, o + j - 1, 1], {j, 1, u}] +
Sum[b[u + j - 1, o - j, 2]*If[t == 2, x, 1], {j, 1, o}] // Expand];
a[n_] := Coefficient[b[n, 0, 1], x, 2];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|