Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Jul 07 2020 07:42:51
%S 1,-1,-2,2,16,-40,-320,1040,12160,-52480,-742400,3872000,66457600,
%T -411136000,-8202444800,58479872000,1335009280000,-10791497728000,
%U -277035646976000,2502527565824000,71391934873600000,-712816377856000000,-22367684235100160000,244597236078018560000
%N Pseudo-factorials: a(0)=1, a(n+1) = (-1)^(n+1) * Sum_{k=0..n} binomial(n,k) * a(k)*a(n-k), n>=0.
%C A variation on the usual factorials (which satisfy the recursion (n+1)!=sum('binomial(n,k)*k!*(n-k)!','k'=0..n) for n>=0).
%C This sequence seems to satisfy an analog of Wilson's Theorem (which states that (p-1)! equals -1 modulo p for p a prime): For p<10000 a prime congruent to 2 modulo 3, we have a(p-1) congruent to 1 mod p and a(n) congruent to 0 mod p for n>p. For p<10000 a prime congruent to 1 mod 3 we have a(p-1)+a(p) congruent to -1 modulo p.
%C On the analytic side, the sequence is closely related (via its exponential generating series) to the elliptic curve of j-invariant O (corresponding to the regular hexagonal lattice).
%C This sequence has a generating function expressible in terms of the Dixon elliptic function sm(x,0) whose coefficients are A104133. The ordinary generating function has a continued fraction expansion of Jacobi type: the numerators are -j^2*(2-(-1)^j) and the denominators are (-1)^(j-1)(j+1/2+(-1)^j/2). - _Philippe Flajolet_ and _Roland Bacher_, Jan 18 2009
%H Alois P. Heinz, <a href="/A098777/b098777.txt">Table of n, a(n) for n = 0..464</a> (first 101 terms from T. D. Noe)
%H R. Bacher and P. Flajolet, <a href="http://arxiv.org/abs/0901.1379">Pseudo-factorials, Elliptic Functions and Continued Fractions</a>, arXiv:0901.1379 [math.CA], 2009.
%H P. Flajolet, <a href="http://algo.inria.fr/flajolet/Publications/publist.html">Research Papers</a>
%H Maxim V. Polyakov, Kirill M. Semenov-Tian-Shansky, Alexander O. Smirnov, Alexey A. Vladimirov, <a href="https://arxiv.org/abs/1811.08449">Quasi-Renormalizable Quantum Field Theories</a>, arXiv:1811.08449 [hep-th], 2018.
%F The exponential generating function f(z) = Sum_{n>=0} a(n) * z^n/n! satisfies f'(z)=-f(-z)^2 and is an elliptic function with respect to a regular hexagonal lattice (moreover, -f(z)f(-z) is (up to translation) a Weierstrass function.
%F a(n) = -n!/R^(n+1)*sum(b^(8*p+4*q)/((p-1/2)*b+(q-1/2)/b)^(n+1), p = -infinity..infinity, q = -infinity..infinity), where b = exp(I*Pi/6) and R = 2^(-4/3)/Pi*GAMMA(1/3)^3. - _Philippe Flajolet_ and _Roland Bacher_, Jan 18 2009
%F G.f.: 1/Q(0), where Q(k) = 1 + (2*k+1)*x + 3*x^2*(2*k+1)^2/(1 - (2*k+1)*x + x^2*(2*k+2)^2/Q(k+1) ); (continued fraction after P. Flajolet). - _Sergei N. Gladkovskii_, Dec 05 2013
%F E.g.f.: (1 - 3*Series_Reversion( Integral 1/(1 - 9*x^2)^(2/3) dx ))^(1/3). - _Paul D. Hanna_, Apr 10 2014
%e G.f. = 1 - x - 2*x^2 + 2*x^3 + 16*x^4 - 40*x^5 - 320*x^6 + 1040*x^7 + ...
%p a:= proc(n) option remember; `if`(n=0, 1, (-1)^n*add(
%p binomial(n-1, k) *a(k) *a(n-1-k), k=0..n-1))
%p end:
%p seq(a(n), n=0..25); # _Alois P. Heinz_, May 22 2018
%t max = 23; f[z_] = Sum[a[n]*(z^n/n!), {n, 0, max}]; a[0] = 1; a[1] = -1; eq = Rest[ Thread[ CoefficientList[f'[z] + f[-z]^2, z] == 0]]; sol = Solve[ Drop[eq, -max-1]][[1]]; Table[a[n], {n, 0, max}] /. sol (* _Jean-François Alcover_, Oct 05 2011 *)
%t a[0] = 1; a[n_] := a[n] = (-1)^n*Sum[Binomial[n-1, k]*a[k]*a[n-k-1], {k, 0, n-1}]; Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, Apr 15 2015 *)
%t a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (1 - 3 InverseSeries[ Integrate[ Series[ (1 - 9 x^2)^(-2/3), {x, 0, n}], x]])^(1/3), {x, 0, n}]]; (* _Michael Somos_, May 22 2018 *)
%t Table[SeriesCoefficient[With[{wp = WeierstrassP[z, {0, 4/27}], pd = WeierstrassPPrime[z, {0, 4/27}]}, (2 (2 - 9 pd + 9 wp (2 + 3 pd + 3 wp^2)))/((9 pd + 2 (1 - 3 wp)^2) (2 + 3 wp))], {z, 0, n}] n!, {n, 0, 23}] (* _Jan Mangaldan_, Jul 07 2020 *)
%t nmax = 25; CoefficientList[(1 - 3*InverseSeries[Series[x*Hypergeometric2F1[1/2, 2/3, 3/2, 9*x^2], {x, 0, nmax}]])^(1/3), x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Jul 07 2020 *)
%o (PARI) a(n)=local(A=1); A=(1-3*serreverse(intformal(1/(1-9*x^2 +x*O(x^n))^(2/3))))^(1/3); n!*polcoeff(A, n)
%o for(n=0, 20, print1(a(n), ", ")) \\ _Paul D. Hanna_, Apr 10 2014
%Y Cf. A144689, A144750, A235166.
%K sign
%O 0,3
%A _Roland Bacher_, Oct 04 2004