login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A096376 a(n) = n + (n-1)^2 + (n+1)^2. 10
2, 5, 12, 23, 38, 57, 80, 107, 138, 173, 212, 255, 302, 353, 408, 467, 530, 597, 668, 743, 822, 905, 992, 1083, 1178, 1277, 1380, 1487, 1598, 1713, 1832, 1955, 2082, 2213, 2348, 2487, 2630, 2777, 2928, 3083, 3242, 3405, 3572, 3743, 3918, 4097, 4280, 4467, 4658 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Numbers represented as 212 in number base n including binary with digits larger than 1: 212_2 = 12 and ternary 212_3 = 23. - Ron Knott, Nov 14 2017

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 2*n^2 + n + 2. - N. J. A. Sloane, Nov 10 2009

a(n) = 4*n + a(n-1) - 1 (with a(0)=2). - Vincenzo Librandi, Nov 16 2010

From Colin Barker, Oct 03 2012: (Start)

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

G.f.: (2 - x + 3*x^2)/(1-x)^3. (End)

E.g.f.: (2*x^2 + 3*x +2)*exp(x). - G. C. Greubel, Jul 16 2017

EXAMPLE

1 + 0 + 4 = 5, 2 + 1 + 9 = 12, 3 + 4 + 16 = 23, ...

MAPLE

A096376:=n->n + (n-1)^2 + (n+1)^2: seq(A096376(n), n=0..100); # Wesley Ivan Hurt, Jul 16 2017

MATHEMATICA

f[n_]:=(n*(2*n+1)+2); Table[f[n], {n, 5!}] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *)

LinearRecurrence[{3, -3, 1}, {2, 5, 12}, 50] (* Harvey P. Dale, Mar 15 2015 *)

PROG

(PARI) a(n)=n+(n-1)^2+(n+1)^2 \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Sequence in context: A109653 A115520 A116735 * A326510 A112287 A127787

Adjacent sequences:  A096373 A096374 A096375 * A096377 A096378 A096379

KEYWORD

easy,nonn

AUTHOR

Odimar Fabeny, Aug 04 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 00:46 EST 2022. Contains 350473 sequences. (Running on oeis4.)