OFFSET
-1,2
COMMENTS
LINKS
G. A. Edgar, Table of n, a(n) for n = -1..1002
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (1/q) * (phi(q)^3 * psi(-q)) / (phi(q^3) * psi(-q^3)^3) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q^2)^14 / (eta(q)^5 * eta(q^3) * eta(q^4)^5 * eta(q^6)^2 * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 5, -9, 6, -4, 5, -6, 5, -4, 6, -9, 5, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 9 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A164617.
a(n) = -(-1)^n * A128632(n). - Michael Somos, May 20 2015
EXAMPLE
G.f. = 1/q + 5 + 6*q - 4*q^2 - 3*q^3 + 12*q^4 - 8*q^5 - 12*q^6 + 30*q^7 - 20*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2 EllipticTheta[ 3, 0, q]^3 EllipticTheta[ 2, Pi/4, q^(1/2)] / (EllipticTheta[ 3, 0, q^3] EllipticTheta[ 2, Pi/4, q^(3/2)]^3), {q, 0, n}]; (* Michael Somos, May 20 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A)^14 / (eta(x + A)^5 * eta(x^3 + A) * eta(x^4 + A)^5 * eta(x^6 + A)^2 * eta(x^12 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 05 2011
STATUS
approved