login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187146
McKay-Thompson series of class 12B for the Monster group with a(0) = 5.
4
1, 5, 6, -4, -3, 12, -8, -12, 30, -20, -30, 72, -46, -60, 156, -96, -117, 300, -188, -228, 552, -344, -420, 1008, -603, -732, 1770, -1048, -1245, 2976, -1776, -2088, 4908, -2900, -3420, 7992, -4658, -5460, 12756, -7408, -8583, 19944, -11564, -13344, 30756
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (1/q) * (phi(q)^3 * psi(-q)) / (phi(q^3) * psi(-q^3)^3) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q^2)^14 / (eta(q)^5 * eta(q^3) * eta(q^4)^5 * eta(q^6)^2 * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 5, -9, 6, -4, 5, -6, 5, -4, 6, -9, 5, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 9 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A164617.
Convolution of A113660 and A133637.
a(n) = -(-1)^n * A128632(n). - Michael Somos, May 20 2015
EXAMPLE
G.f. = 1/q + 5 + 6*q - 4*q^2 - 3*q^3 + 12*q^4 - 8*q^5 - 12*q^6 + 30*q^7 - 20*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2 EllipticTheta[ 3, 0, q]^3 EllipticTheta[ 2, Pi/4, q^(1/2)] / (EllipticTheta[ 3, 0, q^3] EllipticTheta[ 2, Pi/4, q^(3/2)]^3), {q, 0, n}]; (* Michael Somos, May 20 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A)^14 / (eta(x + A)^5 * eta(x^3 + A) * eta(x^4 + A)^5 * eta(x^6 + A)^2 * eta(x^12 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 05 2011
STATUS
approved