OFFSET
1,2
COMMENTS
The binary expansion is the characteristic function of the squares (A010052).
This constant is transcendental (Nesterenko, 1996). - Amiram Eldar, Apr 30 2020
LINKS
David H. Bailey, Jonathan M. Borwein, Richard E. Crandall, and Carl Pomerance, On the binary expansions of algebraic numbers, Journal de théorie des nombres de Bordeaux, Vol. 16, No. 3 (2004), pp. 487-518. See p. 490.
Yu. V. Nesterenko, Modular functions and transcendence questions (in Russian), Sbornik: Mathematics, Vol. 187 (1996), pp. 65-96, English translation, ibid., pp. 1319-1348.
Michael Ian Shamos, Property Enumerators and a Partial Sum Theorem, 2011; alternative link.
FORMULA
Equals (1 + theta_3(1/2))/2, where theta_3 is the Jacobi theta function.
Equals 1 + Sum_{k>=1} lambda(k)/(2^k - 1), where lambda is the Liouville function (A008836). - Amiram Eldar, Apr 30 2020
Equals 1 + Sum_{k>=1} floor(sqrt(k))/2^(k+1) (Shamos, 2011, p. 4). - Amiram Eldar, Mar 12 2024
EXAMPLE
1.5644684136059385793347... = (1.1001000010000001000000001...)_2.
| | | | | |
0 1 4 9 16 25
MATHEMATICA
RealDigits[(1 + EllipticTheta[3, 0, 1/2])/2, 10, 110] [[1]]
PROG
(PARI) suminf(k=0, 1/2^(k^2)) \\ Michel Marcus, Sep 08 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Ilya Gutkovskiy, Sep 07 2018
STATUS
approved