OFFSET
1,3
COMMENTS
a(1) = 0 since the descent set of the identity permutation is empty.
Lim_{n->infinity} a(n)/n! = e - 1.
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 2011; see Section 1.4, pp. 38.
LINKS
Peter Kagey, Table of n, a(n) for n = 1..400
FORMULA
a(n) = Sum_{k=1..n-1} k^2*binomial(n, k+1)*(n - k - 1)!.
a(n+1) = (n+1)*a(n) + n^2, with a(1) = 0.
a(n) = A002627(n) - n.
EXAMPLE
For n = 3, the least element of the descent set for each permutation in S_3 is given by the table:
+-------------+-------------+----------------------+
| permutation | descent set | least element (or 0) |
+-------------+-------------+----------------------+
| 123 | {} | 0 |
| 132 | {2} | 2 |
| 213 | {1} | 1 |
| 231 | {2} | 2 |
| 312 | {1} | 1 |
| 321 | {1,2} | 1 |
+-------------+-------------+----------------------+
Thus a(3) = 0 + 2 + 1 + 2 + 1 + 1 = 7.
MATHEMATICA
Table[Sum[k^2*Binomial[n, k + 1]*(n - k - 1)!, {k, 1, n - 1}], {n, 1, 15}]
PROG
(PARI) a(n) = sum(k=1, n-1, k^2*binomial(n, k+1)*(n-k-1)!); \\ Michel Marcus, Nov 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Kagey, Sep 07 2018
STATUS
approved