This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319013 a(n) is the sum over each permutation of S_n of the least element of the descent set. 0
 0, 1, 7, 37, 201, 1231, 8653, 69273, 623521, 6235291, 68588301, 823059733, 10699776673, 149796873591, 2246953104061, 35951249665201, 611171244308673, 11001082397556403, 209020565553571981, 4180411311071439981, 87788637532500240001, 1931350025715005280463 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(1) = 0 since the descent set of the identity permutation is empty. Lim_{n->infinity} a(n)/n! = e - 1. REFERENCES R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 2011; see Section 1.4, pp. 38. LINKS FORMULA a(n) = Sum_{k=1..n-1} k^2*binomial(n, k+1)*(n - k - 1)! a(n+1) = (n+1)*a(n) + n^2, with a(1) = 0. a(n) = A002627(n) - n. EXAMPLE For n = 3, the least element of the descent set for each permutation in S_3 is given by the table: +-------------+-------------+----------------------+ | permutation | descent set | least element (or 0) | +-------------+-------------+----------------------+ | 123         | {}          | 0                    | | 132         | {2}         | 2                    | | 213         | {1}         | 1                    | | 231         | {2}         | 2                    | | 312         | {1}         | 1                    | | 321         | {1,2}       | 1                    | +-------------+-------------+----------------------+ Thus a(3) = 0 + 2 + 1 + 2 + 1 + 1 = 7. MATHEMATICA Table[Sum[k^2*Binomial[n, k + 1]*(n - k - 1)!, {k, 1, n - 1}], {n, 1, 15}] CROSSREFS Cf. A002627. Sequence in context: A002807 A124610 A002683 * A126475 A274674 A255672 Adjacent sequences:  A319010 A319011 A319012 * A319014 A319015 A319016 KEYWORD nonn AUTHOR Peter Kagey, Sep 07 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 20:12 EDT 2019. Contains 327247 sequences. (Running on oeis4.)