|
|
A213659
|
|
a(n) = 3^n + 2^(2*n + 1).
|
|
2
|
|
|
11, 41, 155, 593, 2291, 8921, 34955, 137633, 543971, 2156201, 8565755, 34085873, 135812051, 541653881, 2161832555, 8632981313, 34488878531, 137826373961, 550918075355, 2202510039953, 8806553375411, 35215753148441, 140831631534155
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Number of dominating subsets of the graph G(n) consisting of an edge ab and n triangles, each having one vertex identified with the vertex b.
Resultant of polynomial 2*x^n+1 with the polynomial 3*x^(n+1)+2. - Philippe Deléham, Jan 19 2024
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=1..2*n+2} A213658(n,k).
a(n) = 3^n + 2^(2*n+1).
G.f.: -x*(-11+36*x) / ( (4*x-1)*(3*x-1) ). - R. J. Mathar, Jul 03 2012
|
|
EXAMPLE
|
a(1)=11 because the graph G(1) is abcd with edges ab, bc, bd, and cd; there is 1 dominating subset of size 1 ({b}), all binomial(4,2)=6 subsets of size 2 of {a,b,c,d} with the exception of {c,d} are dominating; all binomial(4,3)=4 subsets of size 3 of {a,b,c,d} are dominating; obviously, {a,b,c,d} is dominating; 1+5+4+1 = 11.
a(1) = Det [2, 1, 0; 0, 2, 1; 3, 0, 2] = 11; a(2) = Det [2, 0, 1, 0, 0; 0, 2, 0, 1, 0; 0, 0, 2, 0, 1; 3, 0, 0, 2, 0; 0, 3, 0, 0, 2] = 41; a(3) = Det [2, 0, 0, 1, 0, 0, 0; 0, 2, 0, 0, 1, 0, 0; 0, 0, 2, 0, 0, 1, 0; 0, 0, 0, 2, 0, 0, 1; 3, 0, 0, 0, 2, 0, 0; 0, 3, 0, 0, 0, 2, 0; 0, 0, 3, 0, 0, 0, 2] = 155. - Philippe Deléham, Jan 19 2024
|
|
MAPLE
|
seq(3^n+2^(2*n+1), n=1..30);
|
|
MATHEMATICA
|
LinearRecurrence[{7, -12}, {11, 41}, 30] (* Harvey P. Dale, Sep 10 2017 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|