login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A154739
Decimal expansion of sqrt(1 - 1/sqrt(2)), the abscissa of the point of bisection of the arc of the unit lemniscate (x^2 + y^2)^2 = x^2 - y^2 in the first quadrant.
9
5, 4, 1, 1, 9, 6, 1, 0, 0, 1, 4, 6, 1, 9, 6, 9, 8, 4, 3, 9, 9, 7, 2, 3, 2, 0, 5, 3, 6, 6, 3, 8, 9, 4, 2, 0, 0, 6, 1, 0, 7, 2, 0, 6, 3, 3, 7, 8, 0, 1, 5, 4, 4, 4, 6, 8, 1, 2, 9, 7, 0, 9, 5, 6, 5, 2, 9, 8, 8, 9, 7, 3, 5, 4, 1, 0, 1, 2, 6, 6, 6, 4, 7, 7, 8, 2, 6, 1, 4, 9, 5
OFFSET
0,1
COMMENTS
A root of 2*x^4 - 4*x^2 + 1 = 0.
REFERENCES
C. L. Siegel, Topics in Complex Function Theory, Volume I: Elliptic Functions and Uniformization Theory, Wiley-Interscience, 1969, page 5.
LINKS
FORMULA
From Amiram Eldar, Nov 22 2024: (Start)
Equals sqrt(2) * sin(Pi/8) = A002193 * A182168.
Equals Product_{k>=0} (1 - (-1)^k/(4*k+2)) = Product_{k>=1} (1 + (-1)^k/A016825(k)). (End)
Equals 1/A179260 = sqrt(A268682). - Hugo Pfoertner, Nov 22 2024
EXAMPLE
0.541196100146196984399723205366...
MATHEMATICA
nmax = 1000; First[ RealDigits[ Sqrt[ 1 - 1/Sqrt[2] ], 10, nmax] ]
PROG
(PARI) sqrt(1 - 1/sqrt(2)) \\ G. C. Greubel, Sep 23 2017
CROSSREFS
Cf. A154743 for the ordinate and A154747 for the radius vector.
Cf. A154740, A154741 and A154742 for the continued fraction and the numerators and denominators of the convergents.
Cf. A085565 for 1.311028777..., the first-quadrant arc length of the unit lemniscate.
Sequence in context: A132707 A213658 A046575 * A321044 A136564 A136042
KEYWORD
nonn,cons,easy
AUTHOR
Stuart Clary, Jan 14 2009
EXTENSIONS
Offset corrected by R. J. Mathar, Feb 05 2009
STATUS
approved