login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154736
Define k(0) = 2 and k(m) = m^2-k(m-1) for m >= 1. This is a list of those m for which k(m)+1 and k(m)-1 are both prime.
2
3, 4, 16, 40, 64, 88, 208, 280, 352, 376, 460, 484, 508, 520, 604, 1012, 1024, 1072, 1168, 1240, 1264, 1336, 1420, 1432, 1444, 1912, 2176, 2212, 2548, 2560, 2632, 2836, 2848, 2872, 2944, 2956, 3184, 3220, 3508, 3616, 3640, 3772, 3868, 3892, 3928, 3940, 3952
OFFSET
1,1
LINKS
FORMULA
A154734(n+1) = k(a(n)) where k(m) = m*(m+1)/2+2*(-1)^m. - R. J. Mathar, Jul 16 2022
EXAMPLE
The initial values of k(m) are:
k(0) = 2
k(1) = 1-2 = -1
k(2) = 4+1 = 5
k(3) = 9-5 = 4 and both 3 and 5 are primes, so 3 is the first term in the sequence
k(4) = 16-4 = 12, and 11 & 13 are primes, so a(2) = 4
and so on - N. J. A. Sloane, Jul 14 2022
MATHEMATICA
k=2; lst={}; Do[k=n^2-k; If[PrimeQ[k-1]&&PrimeQ[k+1], AppendTo[lst, n]], {n, 8!}]; lst
(* Second program: *)
k = 2; Reap[Do[Set[k, m^2 - k]; If[AllTrue[k + {-1, 1}, PrimeQ], Sow[m]], {m, 4000}]][[-1, -1]] (* Michael De Vlieger, Jul 14 2022 *)
PROG
(PARI) a154736(upto, k0=2) = {my(k=k0); for(n=1, upto, my(kk=n^2-k); if(isprime(kk-1) && isprime(kk+1), print1(n, ", ")); k=kk)};
a154736(5000) \\ Hugo Pfoertner, Jul 14 2022
CROSSREFS
Cf. A154734.
Sequence in context: A328773 A330693 A329541 * A188114 A188116 A300316
KEYWORD
nonn
AUTHOR
EXTENSIONS
Better name from Pontus von Brömssen, Jul 14 2022
STATUS
approved