login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Define k(0) = 2 and k(m) = m^2-k(m-1) for m >= 1. This is a list of those m for which k(m)+1 and k(m)-1 are both prime.
2

%I #27 Jul 18 2022 19:29:07

%S 3,4,16,40,64,88,208,280,352,376,460,484,508,520,604,1012,1024,1072,

%T 1168,1240,1264,1336,1420,1432,1444,1912,2176,2212,2548,2560,2632,

%U 2836,2848,2872,2944,2956,3184,3220,3508,3616,3640,3772,3868,3892,3928,3940,3952

%N Define k(0) = 2 and k(m) = m^2-k(m-1) for m >= 1. This is a list of those m for which k(m)+1 and k(m)-1 are both prime.

%H Michael De Vlieger, <a href="/A154736/b154736.txt">Table of n, a(n) for n = 1..10000</a>

%F A154734(n+1) = k(a(n)) where k(m) = m*(m+1)/2+2*(-1)^m. - _R. J. Mathar_, Jul 16 2022

%e The initial values of k(m) are:

%e k(0) = 2

%e k(1) = 1-2 = -1

%e k(2) = 4+1 = 5

%e k(3) = 9-5 = 4 and both 3 and 5 are primes, so 3 is the first term in the sequence

%e k(4) = 16-4 = 12, and 11 & 13 are primes, so a(2) = 4

%e and so on - _N. J. A. Sloane_, Jul 14 2022

%t k=2;lst={};Do[k=n^2-k;If[PrimeQ[k-1]&&PrimeQ[k+1],AppendTo[lst,n]],{n,8!}];lst

%t (* Second program: *)

%t k = 2; Reap[Do[Set[k, m^2 - k]; If[AllTrue[k + {-1, 1}, PrimeQ], Sow[m]], {m, 4000}]][[-1, -1]] (* _Michael De Vlieger_, Jul 14 2022 *)

%o (PARI) a154736(upto,k0=2) = {my(k=k0); for(n=1, upto, my(kk=n^2-k); if(isprime(kk-1) && isprime(kk+1), print1(n,", ")); k=kk)};

%o a154736(5000) \\ _Hugo Pfoertner_, Jul 14 2022

%Y Cf. A154734.

%K nonn

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Jan 14 2009

%E Better name from _Pontus von Brömssen_, Jul 14 2022