|
|
A213655
|
|
Number of dominating subsets of the theta-graph TH(2,2,n) (n>=1). A tribonacci sequence with initial values 13, 23, and 41.
|
|
1
|
|
|
13, 23, 41, 77, 141, 259, 477, 877, 1613, 2967, 5457, 10037, 18461, 33955, 62453, 114869, 211277, 388599, 714745, 1314621, 2417965, 4447331, 8179917, 15045213, 27672461, 50897591, 93615265, 172185317, 316698173, 582498755
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A theta-graph is a graph consisting of two vertices of degree three, connected by three paths of one or more edges each. In the theta-graph TH(2,2,n) the three paths have 2, 2, and n edges, respectively.
|
|
REFERENCES
|
S. Alikhani and Y. H. Peng, Dominating sets and domination polynomials of certain graphs, II, Opuscula Math., 30, No. 1, 2010, 37-51.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = a(n-1) + a(n-2) + a(n-3) for n >= 4; a(1)=13, a(2)=23, a(3)=41.
G.f.: -x*(13+10*x+5*x^2)/(-1+x+x^2+x^3). - R. J. Mathar, Jul 22 2022
|
|
EXAMPLE
|
a(1)=13. TH(2,2,1) is the graph obtained from the cycle ABCD by joining vertices A and C. All 2^4 - 1 = 15 nonempty subsets of {A,B,C,D} are dominating with the exception of {B} and {D}.
|
|
MAPLE
|
a := proc (n) if n = 1 then 13 elif n = 2 then 23 elif n = 3 then 41 else a(n-1)+a(n-2)+a(n-3) end if end proc: seq(a(n), n = 1 .. 30);
|
|
MATHEMATICA
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|