login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224924
Sum_{i=0..n} Sum_{j=0..n} (i AND j), where AND is the binary logical AND operator.
4
0, 1, 3, 12, 16, 33, 63, 112, 120, 153, 211, 300, 408, 553, 735, 960, 976, 1041, 1155, 1324, 1536, 1809, 2143, 2544, 2952, 3433, 3987, 4620, 5320, 6105, 6975, 7936, 7968, 8097, 8323, 8652, 9072, 9601, 10239, 10992, 11800, 12729, 13779, 14956, 16248, 17673, 19231, 20928
OFFSET
0,3
COMMENTS
For n>0, a(2^n)-A000217(2^n)=a(2^n-1)-A000217(2^n-1) [See links]. - R. J. Cano, Aug 21 2013
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 0..1000
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, pp. 42-43.
FORMULA
a(2^n) = a(2^n - 1) + 2^n.
a(n) -a(n-1) = 2*A222423(n) -n. - R. J. Mathar, Aug 22 2013
MAPLE
read("transforms") :
A224924 := proc(n)
local a, i, j ;
a := 0 ;
for i from 0 to n do
for j from 0 to n do
a := a+ANDnos(i, j) ;
end do:
end do:
a ;
end proc: # R. J. Mathar, Aug 22 2013
MATHEMATICA
a[n_] := Sum[BitAnd[i, j], {i, 0, n}, {j, 0, n}];
Table[a[n], {n, 0, 20}]
(* Enrique Pérez Herrero, May 30 2015 *)
PROG
(Python)
for n in range(99):
s = 0
for i in range(n+1):
for j in range(n+1):
s += i & j
print(s, end=', ')
(PARI) a(n)=sum(i=0, n, sum(j=0, n, bitand(i, j))); \\ R. J. Cano, Aug 21 2013
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Alex Ratushnyak, Apr 19 2013
STATUS
approved