The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A224921 Number of Pythagorean triples (a, b, c) with a^2 + b^2 = c^2 and 0 < a < b < c < n. 8
 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 8, 9, 9, 9, 10, 11, 11, 11, 11, 12, 13, 13, 14, 14, 15, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 20, 21, 22, 23, 23, 24, 24, 24, 25, 25, 26, 27, 27, 27, 27, 31, 31, 31, 32, 32, 33, 33, 33 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,11 COMMENTS a(n+1) > a(n) iff n is in A009003. - Benoit Cloitre, Dec 08 2021 LINKS Reiner Moewald and Robert Israel, Table of n, a(n) for n = 1..10000 (n = 1..500 from Reiner Moewald) MAPLE a046080:= proc(n) local F, t; F:= select(t -> t[1] mod 4 = 1, ifactors(n)[2]); 1/2*(mul(2*t[2]+1, t=F)-1) end proc: ListTools:-PartialSums(map(a046080, [\$0..100])); # Robert Israel, Jul 18 2016 MATHEMATICA b[0] = b[1] = 0; b[n_] := With[{fi = Select[FactorInteger[n], Mod[#[[1]], 4] == 1&][[All, 2]]}, (Times @@ (2*fi + 1) - 1)/2]; Table[b[n], {n, 0, 100}] // Accumulate (* Jean-François Alcover, Feb 27 2019 *) PROG (PARI) a(n)=sum(a=1, n-3, sum(b=a+1, sqrtint((n-1)^2-a^2), issquare(a^2+b^2))) \\ Charles R Greathouse IV, Apr 29 2013 CROSSREFS Cf. A156685. Essentially partial sums of A046080. Cf. A009003. Sequence in context: A332247 A341168 A071824 * A225370 A114540 A183142 Adjacent sequences: A224918 A224919 A224920 * A224922 A224923 A224924 KEYWORD nonn AUTHOR Reiner Moewald, Apr 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 19:25 EDT 2023. Contains 361552 sequences. (Running on oeis4.)