login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156685
Number of primitive Pythagorean triples A^2 + B^2 = C^2 with 0 < A < B < C and gcd(A,B)=1 that have a hypotenuse C that is less than or equal to n.
3
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12
OFFSET
1,13
COMMENTS
D. N. Lehmer has proved that the asymptotic density of a(n) is a(n)/n = 1/(2*Pi) = 0.1591549...
REFERENCES
Lehmer, Derrick Norman; Asymptotic Evaluation of Certain Totient Sums, American Journal of Mathematics, Vol. 22, No. 4, (Oct. 1900), pp. 293-335.
LINKS
Ramin Takloo-Bighash, How many Pythagorean triples are there?, A Pythagorean Introduction to Number Theory, Undergraduate Texts in Mathematics, Springer, Cham, 2018, 211-226.
FORMULA
Essentially partial sums of A024362.
EXAMPLE
There is one primitive Pythagorean triple with a hypotenuse less than or equal to 7 -- (3,4,5) -- hence a(7)=1.
G.f. = x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + 2*x^13 + 2*x^14 + ...
MATHEMATICA
RightTrianglePrimitiveHypotenuses[1]:=0; RightTrianglePrimitiveHypotenuses[n_Integer?Positive]:=Module[{f=Transpose[FactorInteger[n]], a, p, mod1posn}, {p, a}=f; mod1=Select[p, Mod[ #, 4]==1&]; If[Length[a]>Length[mod1], 0, 2^(Length[mod1]-1)]]; RightTrianglePrimitiveHypotenuses[ # ] &/@Range[75]//Accumulate
PROG
(Haskell)
a156685 n = a156685_list !! (n-1)
a156685_list = scanl1 (+) a024362_list -- Reinhard Zumkeller, Dec 02 2012
(PARI) a(n)=sum(a=1, n-2, sum(b=a+1, sqrtint(n^2-a^2), gcd(a, b)==1 && issquare(a^2+b^2))) \\ Charles R Greathouse IV, Apr 29 2013
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Ant King, Feb 17 2009
STATUS
approved