login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A324965
Partial sums of A324964.
3
0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11
OFFSET
0,6
COMMENTS
Conjecture: a(n) <= A324918(n) for all n >= 13.
LINKS
C. Defant, Counting 3-stack-sortable permutations, arXiv:1903.09138 [math.CO], 2019.
PROG
(PARI) f(n) = binomial(3*n, n)*2/((n+1)*(2*n+1)) % 2; \\ A324964
a(n) = sum(k=0, n, f(k)); \\ Michel Marcus, Apr 02 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Colin Defant, Mar 21 2019
STATUS
approved