login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324963
G.f.: A(x) = Sum_{n>=0} x^n*((1+x)^n + sqrt(A(x)))^n / (1 + x*sqrt(A(x))*(1+x)^n)^(n+1).
1
1, 1, 2, 3, 8, 17, 61, 223, 1058, 5355, 29477, 171068, 1042319, 6646486, 44231512, 306592233, 2209107328, 16514226787, 127857487521, 1023541162850, 8459412252464, 72082183806141, 632429635304865, 5706629531494240, 52899935984638147, 503266172469569926, 4909051455794089278, 49053813732870894847, 501726197168709837165, 5248631560430224087649, 56117483960904047993635, 612815474656922971170469
OFFSET
0,3
LINKS
FORMULA
G.f.: A(x) = Sum_{n>=0} x^n*((1+x)^n + sqrt(A(x)))^n / (1 + x*sqrt(A(x))*(1+x)^n)^(n+1).
G.f.: A(x) = Sum_{n>=0} x^n*((1+x)^n - sqrt(A(x)))^n / (1 - x*sqrt(A(x))*(1+x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 8*x^4 + 17*x^5 + 61*x^6 + 223*x^7 + 1058*x^8 + 5355*x^9 + 29477*x^10 + 171068*x^11 + 1042319*x^12 + ...
Let B = sqrt(A(x)) then
A(x) = 1/(1 + x*B) + x*((1+x) + B)/(1 + x*B*(1+x))^2 + x^2*((1+x)^2 + B)^2/(1 + x*B*(1+x)^2)^3 + x^3*((1+x)^3 + B)^3/(1 + x*B*(1+x)^3)^4 + x^4*((1+x)^4 + B)^4/(1 + x*B*(1+x)^4)^5 + x^5*((1+x)^5 + B)^5/(1 + x*B*(1+x)^5)^6 + ...
and
A(x) = 1/(1 - x*B) + x*((1+x) - B)/(1 - x*B*(1+x))^2 + x^2*((1+x)^2 - B)^2/(1 - x*B*(1+x)^2)^3 + x^3*((1+x)^3 - B)^3/(1 - x*B*(1+x)^3)^4 + x^4*((1+x)^4 - B)^4/(1 - x*B*(1+x)^4)^5 + x^5*((1+x)^5 - B)^5/(1 - x*B*(1+x)^5)^6 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n,
A = Vec( sum(m=0, #A, x^m*((1+x)^m + Ser(A)^(1/2))^m/(1 + x*Ser(A)^(1/2)*(1+x)^m)^(m+1)) )); A[n+1]}
for(n=0, 35, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1]); for(i=1, n,
A = Vec( sum(m=0, #A, x^m*((1+x)^m - Ser(A)^(1/2))^m/(1 - x*Ser(A)^(1/2)*(1+x)^m)^(m+1)) )); A[n+1]}
for(n=0, 35, print1(a(n), ", "))
CROSSREFS
Sequence in context: A345324 A290383 A099960 * A218090 A101182 A009207
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 23 2019
STATUS
approved