login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099960
An interleaving of the Genocchi numbers of the first and second kind, A110501 and A005439.
4
1, 1, 1, 1, 2, 3, 8, 17, 56, 155, 608, 2073, 9440, 38227, 198272, 929569, 5410688, 28820619, 186043904, 1109652905, 7867739648, 51943281731, 401293838336, 2905151042481, 24290513745920, 191329672483963, 1721379917619200, 14655626154768697, 141174819474169856
OFFSET
0,5
COMMENTS
First column (also row sums) of triangle in A099959.
Number of ascent sequences of length n without level steps and with alternating ascents and descents. a(6) = 8: 010101, 010102, 010103, 010201, 010202, 010203, 010212, 010213. - Alois P. Heinz, Oct 27 2017
REFERENCES
Donald E. Knuth, The Art of Computer Programming, Vol. 4, fascicle 1, section 7.1.4, p. 220, answer to exercise 174, Addison-Wesley, 2009.
LINKS
Catalin Zara, Cardinality of l_1-Segments and Genocchi Numbers, arXiv:1304.5798 [math.CO] (2013)
FORMULA
a(n) ~ 2^(5/2) * n^(n+3/2) / (Pi^(n+1/2) * exp(n)). - Vaclav Kotesovec, Sep 10 2014
MAPLE
with(linalg):rev:=proc(a) local n, p; n:=vectdim(a): p:=i->a[n+1-i]: vector(n, p) end: ps:=proc(a) local n, q; n:=vectdim(a): q:=i->sum(a[j], j=1..i): vector(n, q) end: pss:=proc(a) local n, q; n:=vectdim(a): q:=proc(i) if i<=n then sum(a[j], j=1..i) else sum(a[j], j=1..n) fi end: vector(n+1, q) end: R[0]:=vector(1, 1): for n from 1 to 30 do if n mod 2 = 1 then R[n]:=ps(rev(R[n-1])) else R[n]:=pss(rev(R[n-1])) fi od: seq(R[n][1], n=0..30); # Emeric Deutsch
MATHEMATICA
g1 = Table[2*(4^n-1)*BernoulliB[2*n] // Abs, {n, 0, 13}]; g2 = Table[2*(-1)^(n-2)*Sum[Binomial[n, k]*(1-2^(n+k+1))*BernoulliB[n+k+1], {k, 0, n}], {n, 0, 13}]; Riffle[g1, g2] // Rest (* Jean-François Alcover, May 23 2013 *)
PROG
(Sage) # Algorithm of L. Seidel (1877)
def A099960_list(n) :
D = [0]*(n//2+3); D[1] = 1
R = []; b = True; h = 1
for i in (1..n) :
if b :
for k in range(h, 0, -1) : D[k] += D[k+1]
R.append(D[1]); h += 1
else :
for k in range(1, h, 1) : D[k] += D[k-1]
R.append(D[h-1])
b = not b
return R
A099960_list(27) # Peter Luschny, Apr 30 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 13 2004
EXTENSIONS
More terms from Emeric Deutsch, Nov 16 2004
STATUS
approved