Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Aug 03 2021 19:05:00
%S 1,1,1,1,2,3,8,17,56,155,608,2073,9440,38227,198272,929569,5410688,
%T 28820619,186043904,1109652905,7867739648,51943281731,401293838336,
%U 2905151042481,24290513745920,191329672483963,1721379917619200,14655626154768697,141174819474169856
%N An interleaving of the Genocchi numbers of the first and second kind, A110501 and A005439.
%C First column (also row sums) of triangle in A099959.
%C Number of ascent sequences of length n without level steps and with alternating ascents and descents. a(6) = 8: 010101, 010102, 010103, 010201, 010202, 010203, 010212, 010213. - _Alois P. Heinz_, Oct 27 2017
%D Donald E. Knuth, The Art of Computer Programming, Vol. 4, fascicle 1, section 7.1.4, p. 220, answer to exercise 174, Addison-Wesley, 2009.
%H Alois P. Heinz, <a href="/A099960/b099960.txt">Table of n, a(n) for n = 0..500</a>
%H Catalin Zara, <a href="http://arxiv.org/abs/1304.5798">Cardinality of l_1-Segments and Genocchi Numbers</a>, arXiv:1304.5798 [math.CO] (2013)
%F a(n) ~ 2^(5/2) * n^(n+3/2) / (Pi^(n+1/2) * exp(n)). - _Vaclav Kotesovec_, Sep 10 2014
%p with(linalg):rev:=proc(a) local n, p; n:=vectdim(a): p:=i->a[n+1-i]: vector(n,p) end: ps:=proc(a) local n, q; n:=vectdim(a): q:=i->sum(a[j],j=1..i): vector(n,q) end: pss:=proc(a) local n, q; n:=vectdim(a): q:=proc(i) if i<=n then sum(a[j],j=1..i) else sum(a[j],j=1..n) fi end: vector(n+1,q) end: R[0]:=vector(1,1): for n from 1 to 30 do if n mod 2 = 1 then R[n]:=ps(rev(R[n-1])) else R[n]:=pss(rev(R[n-1])) fi od: seq(R[n][1],n=0..30); # _Emeric Deutsch_
%t g1 = Table[2*(4^n-1)*BernoulliB[2*n] // Abs, {n, 0, 13}]; g2 = Table[2*(-1)^(n-2)*Sum[Binomial[n, k]*(1-2^(n+k+1))*BernoulliB[n+k+1], {k, 0, n}], {n, 0, 13}]; Riffle[g1, g2] // Rest (* _Jean-François Alcover_, May 23 2013 *)
%o (Sage) # Algorithm of L. Seidel (1877)
%o def A099960_list(n) :
%o D = [0]*(n//2+3); D[1] = 1
%o R = []; b = True; h = 1
%o for i in (1..n) :
%o if b :
%o for k in range(h,0,-1) : D[k] += D[k+1]
%o R.append(D[1]); h += 1
%o else :
%o for k in range(1,h, 1) : D[k] += D[k-1]
%o R.append(D[h-1])
%o b = not b
%o return R
%o A099960_list(27) # _Peter Luschny_, Apr 30 2012
%Y Cf. A022493, A099959, A001469, A005439, A138265, A294281.
%K nonn,easy
%O 0,5
%A _N. J. A. Sloane_, Nov 13 2004
%E More terms from _Emeric Deutsch_, Nov 16 2004