login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099959
Triangle read by rows: Each row is constructed by forming the partial sums of the previous row, reading from the right and at every other row repeating the final term.
6
1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 6, 8, 8, 14, 17, 17, 17, 34, 48, 56, 56, 104, 138, 155, 155, 155, 310, 448, 552, 608, 608, 1160, 1608, 1918, 2073, 2073, 2073, 4146, 6064, 7672, 8832, 9440, 9440, 18272, 25944, 32008, 36154, 38227, 38227, 38227, 76454, 112608
OFFSET
0,6
COMMENTS
...
LINKS
EXAMPLE
Triangle begins
1;
1,
1, 1;
1, 2,
2, 3, 3;
3, 6, 8,
8, 14, 17, 17;
17, 34, 48, 56,
56, 104, 138, 155, 155;
MAPLE
with(linalg):rev:=proc(a) local n, p; n:=vectdim(a): p:=i->a[n+1-i]: vector(n, p) end: ps:=proc(a) local n, q; n:=vectdim(a): q:=i->sum(a[j], j=1..i): vector(n, q) end: pss:=proc(a) local n, q; n:=vectdim(a): q:=proc(i) if i<=n then sum(a[j], j=1..i) else sum(a[j], j=1..n) fi end: vector(n+1, q) end: R[0]:=vector(1, 1): for n from 1 to 18 do if n mod 2 = 1 then R[n]:=ps(rev(R[n-1])) else R[n]:=pss(rev(R[n-1])) fi od: for n from 0 to 18 do evalm(R[n]) od; # program yields the successive rows # Emeric Deutsch, Nov 16 2004
MATHEMATICA
row[0] = row[1] = {1}; row[n_?OddQ] := Accumulate[ Reverse[ row[n-1] ] ]; row[n_?EvenQ] := (r = Accumulate[ Reverse[ row[n-1] ] ]; AppendTo[r, Last[r] ]); Flatten[ Table[ row[n], {n, 0, 13}]] (* Jean-François Alcover, Dec 16 2011 *)
PROG
(Haskell)
a099959 n k = a099959_tabl !! n !! k
a099959_row n = a099959_tabl !! n
a099959_tabl = map snd $ iterate f (False, [1]) where
f (s, xs) = (not s, if s then zs ++ [last zs] else zs)
where zs = scanl1 (+) (reverse xs)
-- Reinhard Zumkeller, Dec 28 2011
CROSSREFS
First column (and row sums) gives A099960.
If an extra term is added to /every/ row we get A008282. Cf. A099961.
Sequence in context: A080968 A115733 A025496 * A099964 A369302 A363826
KEYWORD
nonn,tabf,nice,easy
AUTHOR
N. J. A. Sloane, Nov 13 2004
EXTENSIONS
More terms from Emeric Deutsch, Nov 16 2004
STATUS
approved