login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099964
Triangle read by rows: The n-th row is constructed by forming the partial sums of the previous row, reading from the right and if n is a triangular number repeating the final term.
4
1, 1, 1, 1, 2, 2, 3, 3, 3, 6, 8, 8, 14, 17, 17, 31, 39, 39, 39, 78, 109, 126, 126, 235, 313, 352, 352, 665, 900, 1026, 1026, 1926, 2591, 2943, 2943, 2943, 5886, 8477, 10403, 11429, 11429, 21832, 30309, 36195, 39138, 39138, 75333, 105642, 127474, 138903
OFFSET
0,5
COMMENTS
...
LINKS
EXAMPLE
Triangle begins
1;
1, 1;
1, 2,
2, 3, 3;
3, 6, 8,
8, 14, 17,
17, 31, 39, 39;
39, 78, 109, 126,
126, 235, 313, 352,
352, 665, 900, 1026,
1026, 1926, 2591, 2943, 2943;
MAPLE
with(linalg):rev:=proc(a) local n, p; n:=vectdim(a): p:=i->a[n+1-i]: vector(n, p) end: ps:=proc(a) local n, q; n:=vectdim(a): q:=i->sum(a[j], j=1..i): vector(n, q) end: pss:=proc(a) local n, q; n:=vectdim(a): q:=proc(i) if i<=n then sum(a[j], j=1..i) else sum(a[j], j=1..n) fi end: vector(n+1, q) end: tr:={seq(n*(n+1)/2, n=1..30)}: R[0]:=vector(1, 1): for n from 1 to 15 do if member(n, tr)=false then R[n]:=ps(rev(R[n-1])) else R[n]:=pss(rev(R[n-1])) fi od: for n from 0 to 15 do evalm(R[n]) od; # Emeric Deutsch, Nov 16 2004
MATHEMATICA
triQ[n_] := Reduce[ n == k(k+1)/2, k, Integers] =!= False; row[0] = {1}; row[1] = {1, 1}; row[n_] := row[n] = (ro = Accumulate[ Reverse[ row[n-1]]]; If[triQ[n], Append[ ro, Last[ro] ], ro]); Flatten[ Table[ row[n], {n, 0, 13}]](* Jean-François Alcover, Nov 24 2011 *)
PROG
(Haskell)
a099964 n k = a099964_tabf !! n !! k
a099964_row n = a099964_tabf !! n
a099964_tabf = scanl f [1] $ tail a010054_list where
f row t = if t == 1 then row' ++ [last row'] else row'
where row' = scanl1 (+) $ reverse row
-- Reinhard Zumkeller, May 02 2012
CROSSREFS
First column (and row sums) gives A099965. Cf. A099966, A099968.
If an extra term is added to /every/ row we get A008282. Cf. A099959, A099961.
Cf. A010054.
Sequence in context: A115733 A025496 A099959 * A369302 A363826 A094440
KEYWORD
nonn,tabf,nice,easy
AUTHOR
N. J. A. Sloane, Nov 13 2004
EXTENSIONS
More terms from Emeric Deutsch, Nov 16 2004
STATUS
approved