Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Aug 03 2021 19:05:00
%S 1,1,1,1,2,2,3,3,3,6,8,8,14,17,17,31,39,39,39,78,109,126,126,235,313,
%T 352,352,665,900,1026,1026,1926,2591,2943,2943,2943,5886,8477,10403,
%U 11429,11429,21832,30309,36195,39138,39138,75333,105642,127474,138903
%N Triangle read by rows: The n-th row is constructed by forming the partial sums of the previous row, reading from the right and if n is a triangular number repeating the final term.
%C ...
%H Reinhard Zumkeller, <a href="/A099964/b099964.txt">Rows n = 0..500 of triangle, flattened</a>
%e Triangle begins
%e 1;
%e 1, 1;
%e 1, 2,
%e 2, 3, 3;
%e 3, 6, 8,
%e 8, 14, 17,
%e 17, 31, 39, 39;
%e 39, 78, 109, 126,
%e 126, 235, 313, 352,
%e 352, 665, 900, 1026,
%e 1026, 1926, 2591, 2943, 2943;
%p with(linalg):rev:=proc(a) local n, p; n:=vectdim(a): p:=i->a[n+1-i]: vector(n,p) end: ps:=proc(a) local n, q; n:=vectdim(a): q:=i->sum(a[j],j=1..i): vector(n,q) end: pss:=proc(a) local n, q; n:=vectdim(a): q:=proc(i) if i<=n then sum(a[j],j=1..i) else sum(a[j],j=1..n) fi end: vector(n+1,q) end: tr:={seq(n*(n+1)/2,n=1..30)}: R[0]:=vector(1,1): for n from 1 to 15 do if member(n,tr)=false then R[n]:=ps(rev(R[n-1])) else R[n]:=pss(rev(R[n-1])) fi od: for n from 0 to 15 do evalm(R[n]) od; # _Emeric Deutsch_, Nov 16 2004
%t triQ[n_] := Reduce[ n == k(k+1)/2, k, Integers] =!= False; row[0] = {1}; row[1] = {1, 1}; row[n_] := row[n] = (ro = Accumulate[ Reverse[ row[n-1]]]; If[triQ[n], Append[ ro, Last[ro] ], ro]); Flatten[ Table[ row[n], {n, 0, 13}]](* _Jean-François Alcover_, Nov 24 2011 *)
%o (Haskell)
%o a099964 n k = a099964_tabf !! n !! k
%o a099964_row n = a099964_tabf !! n
%o a099964_tabf = scanl f [1] $ tail a010054_list where
%o f row t = if t == 1 then row' ++ [last row'] else row'
%o where row' = scanl1 (+) $ reverse row
%o -- _Reinhard Zumkeller_, May 02 2012
%Y First column (and row sums) gives A099965. Cf. A099966, A099968.
%Y If an extra term is added to /every/ row we get A008282. Cf. A099959, A099961.
%Y Cf. A010054.
%K nonn,tabf,nice,easy
%O 0,5
%A _N. J. A. Sloane_, Nov 13 2004
%E More terms from _Emeric Deutsch_, Nov 16 2004