|
|
A024409
|
|
Hypotenuses of more than one primitive Pythagorean triangle.
|
|
11
|
|
|
65, 85, 145, 185, 205, 221, 265, 305, 325, 365, 377, 425, 445, 481, 485, 493, 505, 533, 545, 565, 629, 685, 689, 697, 725, 745, 785, 793, 845, 865, 901, 905, 925, 949, 965, 985, 1025, 1037, 1073, 1105, 1145, 1157, 1165, 1189, 1205, 1241, 1261, 1285, 1313, 1325
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
EXAMPLE
|
65^2 = 16^2 + 63^2 = 33^2 + 56^2 (also = 25^2 + 60^2 = 39^2 + 52^2, but these are not primitive, with gcd = 5 resp. 13). Note that 65 = 1^2 + 8^2 = 4^2 + 7^2 is also the least integer > 1 to be a sum a^2 + b^2 with gcd(a,b) = 1 in two ways. - M. F. Hasler, May 18 2023
|
|
MATHEMATICA
|
f[c_] := f[c] = Block[{a = 1, b, cnt = 0, lmt = Floor[ Sqrt[c^2/2]]}, While[b = Sqrt[c^2 - a^2]; a < lmt, If[IntegerQ@ b && GCD[a, b, c] == 1, cnt++]; a++]; cnt]Select[1 + 4 Range@ 335, f@# > 1 &] (* Robert G. Wilson v, Mar 16 2014 *)
Select[Tally[Sqrt[Total[#^2]]&/@Union[Sort/@({Times@@#, (Last[#]^2-First[ #]^2)/2}&/@(Select[Subsets[Range[1, 71, 2], {2}], GCD@@# == 1&]))]], #[[2]]> 1&][[All, 1]]//Sort (* Harvey P. Dale, Sep 29 2018 *)
|
|
PROG
|
(Haskell)
import Data.List (findIndices)
a024409 n = a024409_list !! (n-1)
a024409_list = map (+ 1) $ findIndices (> 1) a024362_list
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,changed
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|