login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084648 Hypotenuses for which there exist exactly 4 distinct integer triangles. 31
65, 85, 130, 145, 170, 185, 195, 205, 221, 255, 260, 265, 290, 305, 340, 365, 370, 377, 390, 410, 435, 442, 445, 455, 481, 485, 493, 505, 510, 520, 530, 533, 545, 555, 565, 580, 585, 595, 610, 615, 625, 629, 663, 680, 685, 689, 697, 715, 730, 740, 745 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers whose square is decomposable in 4 different ways into the sum of two nonzero squares: these are those with exactly 2 distinct prime divisors of the form 4k+1, each with multiplicity one, or with only one prime divisor of this form with multiplicity 4. - Jean-Christophe Hervé, Nov 11 2013

If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019

LINKS

Ray Chandler, Table of n, a(n) for n = 1..10000

Eric Weisstein's World of Mathematics, Pythagorean Triple

EXAMPLE

a(1) = 65 = 5*13, and 65^2 = 52^2 + 39^2 = 56^2 + 33^2 = 60^2 + 25^2 = 63^2 + 16^2. - Jean-Christophe Hervé, Nov 11 2013

MATHEMATICA

Clear[lst, f, n, i, k] f[n_]:=Module[{i=0, k=0}, Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]], k++ ], {i, n-1, 1, -1}]; k/2]; lst={}; Do[If[f[n]==4, AppendTo[lst, n]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)

CROSSREFS

Cf. A002144, A006339, A046080, A046109, A083025.

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Sequence in context: A025303 A071011 A165158 * A224770 A274044 A024409

Adjacent sequences:  A084645 A084646 A084647 * A084649 A084650 A084651

KEYWORD

nonn

AUTHOR

Eric W. Weisstein, Jun 01 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 24 07:04 EDT 2020. Contains 337975 sequences. (Running on oeis4.)