login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322781
Numbers of the form p*q where p, q are distinct primes congruent to 1 mod 4 such that Legendre(p/q) = -1.
4
65, 85, 185, 265, 365, 481, 485, 493, 533, 565, 629, 685, 697, 785, 865, 949, 965, 985, 1037, 1073, 1157, 1165, 1189, 1241, 1261, 1285, 1385, 1417, 1465, 1565, 1585, 1649, 1685, 1765, 1769, 1781, 1853, 1865, 1921, 1937, 1985, 2117, 2165, 2173, 2257, 2285, 2509, 2561, 2581, 2785, 2813, 2885, 2929, 2941
OFFSET
1,1
COMMENTS
If k is a term, the Pell equation x^2 - k*y^2 = -1 has a solution [Dirichlet, Newman (1977)]. This is only a sufficient condition, there are many other solutions, see A031396.
LINKS
Morris Newman, A note on an equation related to the Pell equation, The American Mathematical Monthly 84.5 (1977): 365-366.
PROG
(PARI) isok(n) = my (f=factor(n)); omega(f)==2 && big omega(f)==2 && f[1, 1]%4==1 && f[2, 1]%4==1 && kronecker(f[1, 1], f[2, 1])==-1 \\ Rémy Sigrist, Jan 11 2019
(Python)
from sympy.ntheory import legendre_symbol, factorint
A322781_list, k = [], 1
while len(A322781_list) < 10000:
fk, fv = zip(*list(factorint(4*k+1).items()))
if sum(fv) == len(fk) == 2 and fk[0] % 4 == fk[1] % 4 == 1 and legendre_symbol(fk[0], fk[1]) == -1:
A322781_list.append(4*k+1)
k += 1 # Chai Wah Wu, Jan 11 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 11 2019
STATUS
approved