The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A323271 Numbers of the form p*q*r where p, q, r are distinct primes congruent to 1 mod 4 such that Legendre(p/q) = Legendre(p/r) = Legendre(q/r) = -1. 4
 2405, 3145, 4745, 6205, 6305, 8245, 8905, 9605, 12545, 12805, 14705, 16405, 16745, 17945, 18241, 19045, 19345, 19805, 20213, 20605, 20905, 22945, 23545, 25805, 26605, 26945, 28645, 29705, 30073, 33745, 35705, 35989, 36205, 36305, 37505, 38369, 38545 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If k is a term, the Pell equation x^2 - k*y^2 = -1 has a solution [Dirichlet, Newman (1977)]. This is only a sufficient condition, there are many other solutions, see A031396. LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 Morris Newman, A note on an equation related to the Pell equation, The American Mathematical Monthly 84.5 (1977): 365-366. PROG (Python) from sympy.ntheory import legendre_symbol, factorint A323271_list, k = [], 1 while len(A323271_list) < 10000:     fk, fv = zip(*list(factorint(4*k+1).items()))     if sum(fv) == len(fk) == 3 and fk % 4 == fk % 4 == fk % 4 == 1 and legendre_symbol(fk, fk) == legendre_symbol(fk, fk) == legendre_symbol(fk, fk) == -1:             A323271_list.append(4*k+1)     k += 1 # Chai Wah Wu, Jan 11 2019 CROSSREFS Cf. A002144, A031396, A322781, A323272. Sequence in context: A031547 A031727 A236038 * A283783 A260274 A234126 Adjacent sequences:  A323268 A323269 A323270 * A323272 A323273 A323274 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 11 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 08:03 EDT 2022. Contains 353852 sequences. (Running on oeis4.)